- 相關推薦
作為一名教師,可能需要進行說課稿編寫工作,借助說課稿可以有效提升自己的教學能力。如何把說課稿做到重點突出呢?下面是小編為大家整理的高一數學說課稿,歡迎大家分享。
高一數學說課稿1
我說課的題目是《集合》。
《集合》是人教版必修1,第一章第一節的內容。
一.教材分析(首先我們一起來探討一下教材的地位和內容)
集合與函數的內容歷來是高中數學課程的傳統內容,也是后繼學習的基礎。作為現代數學基礎的集合論,它是一個具有獨特地位的數學分支。高中數學課程是將集合作為一種語言來學習,它是刻畫函數概念的基礎知識和必備工具。
二、教學目標(接下來我們分析一下本節的教學目標,新《課程標準》制定的學習目標是)
(1)、學習目標
了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。
(2)過程與方法
啟發學生發現問題,提出問題,通過學生的合作學習,探索出結論,并能有
條理的闡述自己的觀點;
(3)、情感態度與價值觀
通過概念的引入,讓學生感受從特殊到一般的認知規律;
激發學生學習數學的興趣和積極性,陶冶學生的情操,培養學生堅忍不拔的意志;
三.教學重點與難點(接下來我們來看一下本節的重點和難點是什么)
重點 :(本節的重點應該是)使學生了解集合的含義與表示,理解集合間的關系和運算,會用集合語言表達數學對象或數學內容)
難點 :(在本節的學習過程中,學生們可能遇到的難點是)
(1)(要)區別較多的`新概念及相應的新符號;
(2)(如何)選擇恰當的方法來準確表示具體的集合;
四.教法分析
1、以學生為中心,重點采用了問題探究和啟發式相結合的教學方法.
2、從實例、到類比、到推廣的問題探究,激發學生學習興趣,培養學
習能力啟發,引導學生得出概念,深化概念.
3、利用多媒體輔助教學,節省時間,增大信息量,增強直觀形象性.
五.說教學過程(下面我以集合的含義與表示為例談一談我的教學設計) (那么整個教學流程分這么幾塊)
“集合的含義與表示”的教學流程:
1問題引入
上體育課時,體育老師喊:高一**班同學集合!聽到口令,咱班全體同學便會從四面八方聚集到體育老師身邊,而那些不是咱班的學生便會自動走開。這樣一來,體育來說的一聲“集合”就把“某些特指的對象集在一起”了。
數學中的“集合”和體育老師的“集合”是一個概念嗎?
2構建新知(那么構建新知的時候,主要圍繞著以下幾點展開)
(1) 集合的含義
數學中的“集合”和體育老師的集合并不是同一概念。體育老師所說的“集合”是動詞,而數學中的集合是名詞。同學們在體育老師的集合號令下形成的整體就是數學中集合的涵義。
師:一般的,某些特定的對象集在一起就成為集合,也簡稱集,例如”我校籃球隊的隊員“圖書館里所有的書”。同學們能不能再接著舉出些集合的例子呢? (自由發言,教師復述其中正確的舉例并板書出來)
(1)我們班所有女生
(2)所有偶數
(3)四大洋
······
(2) 集合與元素的關系
師:元素與集合的關系有“屬于∈”及“不屬于?
如A={2,4,8,16},則4∈A,8∈A,32( )A.(請學生填充)。
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a∈A顛倒過來寫。
(3) 集合的表示法
常用的有列舉法和描述法。
列舉法是把集合中的元素一一列舉出來的方法。
描述法是用確定的條件表示某些對象是否屬于這個集合的方法。
常見數集的專用符號
N:非負整數集(自然數集).
Q:有理數集
R:全體實數的集合
``````
3典例精析
例1, 判斷下列對象是否能組成一個集合,并說明理由
1身材高大的人
2所有的一元二次方程
3所有的數學難題
4滿足的實數所組成的集合
(在這里我要重點講的是第四個問題,有的同學會認為x^2<0的實數解不存在,所以這樣的集合沒有。事實上這樣的回答是錯誤的,因為不存在元素的集合應該叫做空集。
例2(對于例題2也同學們容易錯的題,這里主要是圍繞集合中的元素應該具有互異性展開,因為它具有互譯性,所以這個三角形一定不是等腰三角形)
已知集合{a,b,c}中的三個元素可構成某一三角形的三邊長,那么此三角形一定不是()
A直角三角形B 銳角三角形C鈍角三角形D等腰三角形
例3 課本P3例1 例4 課本P4例2
例2, 例4主要是圍繞著集合的描述方法展開。對于這四道題的設計,我們主要
是圍繞著本節課的重點知識展開。通過對于例題的解析,加深對各個知識點的理解。
4歸納小結,布置作業
歸納小結:
1、集合的概念
2“集合中的元素必須是互異的”應理解為:對于給定的集合,它的任何兩個元素都是不同的.
3、常見數集的專用符號.
設計意圖:讓學生養成在學習之后,能養成做總結的習慣,有利于新知識的構建。 布置作業:
一、課本P7,習題1.1 1
二、1、預習內容,課本P5—P6
高一數學說課稿2
各位領導和老師,大家好!我說課的內容是蘇教版必修1第1章第3節第一課時《交集、并集》,下面我想談談我對這節課的教學構想:
一、教材分析:
與傳統的教材處理不同,本章在學生通過觀察具體集合得到集合的補集的概念后,上升到數學內部,將“補”理解為集合間的一種“運算”。在此基礎上,通過實例,使學生感受和掌握集合之間的另外兩種運算—交和并。設計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數學語言,在后續的學習中是一種重要的工具。因此,在教學過程中要針對具體問題,引導學生恰當使用自然語言、圖形語言和集合語言來描述相應的數學內容。有了集合的語言,可以更清晰的表達我們的思想。所以,集合是整個數學的基礎,在以后的學習中有著極為廣泛的應用。
基于以上的分析制定以下的教學目標
二、教學目標:
1、理解交集與并集的概念;掌握有關集合的術語和符號,并會用它們正確表示一些簡單的集合。 能用Venn圖表示集合之間的.關系;掌握兩個集合的交集、并集的求法。
2、通過對交集、并集概念的學習,培養學生觀察、比較、分析、概括的能力,使學生認識由具體到抽象的思維過程。
3、通過對集合符號語言的學習,培養學生符號表達能力,培養嚴謹的學習作風,養成良好的學習習慣。
三、教學重點、難點:
針對以上的分析我把教學重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導學生通過觀察、比較、分析、概括出交集與并集的概念作為本節的教學難點。
四、教法、學法:
針對我們師范學校學生的特點,我本著低起點、高要求、循序漸進,充分調動學生學習積極性的原則,采用“五環節教學法”。同時利用多媒體輔助教學。
下面我重點說一說教學過程
六、教學過程:
第一個環節:問題情境
通過實例:學校舉辦了排球賽,08小教(2)56名同學中有12名同學參賽,后來又舉辦了田徑賽,這個班有20名同學參賽。已知兩項都參賽的有6名同學。兩項比賽中,這個班共有多少名同學沒有參加過比賽?讓學生感受到數學與我們的生活息息相關,從而激發學生的學習興趣。
學生思考后回答,然后老師加以引導,讓學生的回答達到這樣三個層次:
層次一:發現要求沒有參加比賽的人數,首先應該算出參加比賽的人數,并且知道參加比賽的人數是12+20-6,而不是12+20,因為有6人既參加排球賽又參加田徑賽。
層次二:老師引導學生利用集合的觀點再來研究這個問題。先設利用Venn圖來表示集合A,B,C.發現集合A,B的公共部分就是集合C.
層次三:引導學生發現集合C的元素的構成與集合A,B的元素的關系。學生可以發現集合C中的元素是由既參加排球比賽又參加田徑比賽的同學構成的,更進一步集合C的元素是由既屬于集合A的元素又屬于集合B的元素構成的。
通過對三個層次的探究和分析讓學生體驗數學發現和創造的歷程。
高一數學說課稿3
今天我說課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時:《棱錐的概念和性質》。下面我就從教材分析、教法、學法和教學程序四個方面對本課的教學設計進行說明。
一、說教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學習球的必要基礎。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎知識,同時培養學生猜想、類比、比較、轉化的能力。著名的生物學家達爾文說:“最有價值的知識是關于方法和能力的知識”,因此,應該利用這節課培養學生學習方法、提高學習能力。
2. 教學目標確定:
(1)能力訓練要求
①使學生了解棱錐及其底面、側面、側棱、頂點、高的概念。
②使學生掌握截面的性質定理,正棱錐的性質及各元素間的關系式。
(2)德育滲透目標
①培養學生善于通過觀察分析實物形狀到歸納其性質的能力。
②提高學生對事物的感性認識到理性認識的能力。
③培養學生“理論源于實踐,用于實踐”的觀點。
3. 教學重點、難點確定:
重 點:1.棱錐的截面性質定理 2.正棱錐的性質。
難 點:培養學生善于比較,從比較中發現事物與事物的區別。
二、說教學方法和手段
1、教法:
“以學生參與為標志,以啟迪學生思維,培養學生創新能力為核心”。
在教學中根據高中生心理特點和教學進度需要,設置一些啟發性題目,采用啟發式誘導法,講練結合,發揮教師主導作用,體現學生主體地位。
2、教學手段:
根據《教學大綱》中“堅持啟發式,反對注入式”的教學要求,針對本節課概念性強,思維量大,整節課以啟發學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發展學生的邏輯思維能力;學生在教師營造的“可探索”的環境里,積極參與,生動活潑地獲取知識,掌握規律、主動發現、積極探索。
三、說學法:
這節課的核心是棱錐的截面性質定理,.正棱錐的性質。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發學生反復思考,不斷內化成為自己的認知結構。
四、 學程序:
[復習引入新課]
1.棱柱的性質:(1)側棱都相等,側面是平行四邊形
(2)兩個底面與平行于底面的截面是全等的多邊形
(3)過不相鄰的兩條側棱的截面是平行四邊形
2.幾個重要的四棱柱:平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側面、側棱、頂點、高、對角面的概念
(2).棱錐的表示方法、分類
2、棱錐的性質
(1). 截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質:
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
①各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
②棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;
棱錐的`高、側棱和側棱在底面內的射影也組成一個直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
②正棱錐的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關系
下面我們結合圖形,進一步探討正棱錐中各元素間的關系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。
引申:
①觀察圖中三棱錐S-OBM的側面三角形狀有何特點?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
②若分別假設正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過三角形得出以上各元素間的關系式。
(課后思考題)
[例題分析]
例1.若一個正棱錐每一個側面的頂角都是600,則這個棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
(答案:D)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經過SO的中點且平行于底面的截面△A’B’C’的面積。
解析及圖略
例3.已知正四棱錐的棱長和底面邊長均為a,求:
(1)側面與底面所成角α的余弦(2)相鄰兩個側面所成角β的余弦
解析及圖略
【課堂練習】
1、 知一個正六棱錐的高為h,側棱為L,求它的底面邊長和斜高。
解析及圖略
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。
解析及圖略
【課堂小結】
一:棱錐的基本概念及表示、分類
二:棱錐的性質
1. 截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質
正棱錐的定義:①底面是正多邊形
②頂點在底面的射影是底面的中心
(1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
②正棱錐的側面與底面所成的二面角相等;
③正棱錐中各元素間的關系
【課后作業】
1:課本P52 習題9.8 : 2、 4
2:課時訓練:訓練一
高一數學說課稿4
一、教材分析
1.教材中的地位及作用
本節課是學生在已掌握雙曲線的定義及標準方程之后,在此基礎上,反過來利用雙曲線的標準方程研究其幾何性質。它是教學大綱要求學生必須掌握的內容,也是高考的一個考點,是深入研究雙曲線,靈活運用雙曲線的定義、方程、性質解題的基礎,更能使學生理解、體會解析幾何這門學科的研究方法,培養學生的解析幾何觀念,提高學生的數學素質。
2.教學目標的確定及依據
平面解析幾何研究的主要問題之一就是:通過方程,研究平面曲線的性質。教學參考書中明確要求:學生要掌握圓錐曲線的性質,初步掌握根據曲線的方程,研究曲線的幾何性質的方法和步驟。根據這些教學原則和要求,以及學生的學習現狀,我制定了本節課的教學目標。
(1)知識目標:①使學生能運用雙曲線的標準方程討論雙曲線的范圍、對稱性、頂點、離心率、漸近線等幾何性質;
②掌握雙曲線標準方程中的幾何意義,理解雙曲線的漸近線的概念及證明;
③能運用雙曲線的幾何性質解決雙曲線的一些基本問題。
(2)能力目標:①在與橢圓的性質的類比中獲得雙曲線的性質,培養學生的觀察能力,想象能力,數形結合能力,分析、歸納能力和邏輯推理能力,以及類比的學習方法;
②使學生進一步掌握利用方程研究曲線性質的基本方法,加深對直角坐標系中曲線與方程的概念的理解。
(3)德育目標:培養學生對待知識的科學態度和探索精神,而且能夠運用運動的,變化的觀點分析理解事物。
3.重點、難點的確定及依據
對圓錐曲線來說,漸近線是雙曲線特有的性質,而學生對漸近線的發現與證明方法接受、理解和掌握有一定的困難。因此,在教學過程中我把漸近線的發現作為重點,充分暴露思維過程,培養學生的創造性思維,通過誘導、分析,巧妙地應用極限思想導出了雙曲線的漸近線方程。這樣處理將數學思想滲透于其中,學生也易接受。因此,我把漸近線的證明作為本節課的難點,根據本節的教學內容和教學大綱以及高考的要求,結合學生現有的實際水平和認知能力,我把漸近線和離心率這兩個性質作為本節課的重點。
4.教學方法
這節課內容是通過雙曲線方程推導、研究雙曲線的性質,本節內容類似于“橢圓的簡單的幾何性質”,教學中可以與其類比講解,讓學生自己進行探究,得到類似的結論。在教學中,學生自己能得到的結論應該讓學生自己得到,凡是難度不大,經過學習學生自己能解決的問題,應該讓學生自己解決,這樣有利于調動學生學習的積極性,激發他們的學習積極性,同時也有利于學習建立信心,使他們的主動性得到充分發揮,從中提高學生的思維能力和解決問題的能力。
漸近線是雙曲線特有的
性質,我們常利用它作出雙曲線的草圖,而學生對漸近線的發現與證明方法接受、理解和掌握有一定的困難。因此,在教學過程中著重培養學生的創造性思維,通過誘導、分析,從已有知識出發,層層設(釋)疑,激活已知,啟迪思維,調動學生自身探索的內驅力,進一步清晰概念(或圖形)特征,培養思維的深刻性。
例題的選備,可將此題作一題多變(變條件,變結論),訓練學生一題多解,開拓其解題思路,使他們在做題中總結規律、發展思維、提高知識的應用能力和發現問題、解決問題能力。
二、教學程序
(一).設計思路
(二).教學流程
1.復習引入
我們已經學習過橢圓的標準方程和雙曲線的標準方程,以及橢圓的簡單的幾何性質,請同學們來回顧這些知識點,對學習的舊知識加以復習鞏固,同時為新知識的學習做準備,利用多媒體工具的先進性,結合圖像來演示。
2.觀察、類比
這節課內容是通過雙曲線方程推導、研究雙曲線的性質,本節內容類似于“橢圓的簡單的幾何性質”,教學中可以與其類比講解,讓學生自己進行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質,歸納總結出雙曲線的幾何性質。一般學生能用類似于推
導橢圓的幾何性質的方法得出雙曲線的范圍、對稱性、頂點、離心率,對知識的理解不能浮于表面只會看圖,也要會從方程的角度來解釋,抓住方程的'本質。用多媒體演示,加強學生對雙曲線的簡單幾何性質范圍、對稱性、頂點(實軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個性質和橢圓的性質有何聯系及區別,這樣可以加強新舊知識的聯系,借助于類比方法,引起學生學習的興趣,激發求知欲。
3.雙曲線的漸近線的發現、證明
(1)發現
由橢圓的幾何性質,我們能較準確地畫出橢圓的圖形。那么,由雙曲線的幾何性質,能否較準確地畫出雙曲線的圖形為引例,讓學生動筆實踐,通過列表描點,就能把雙曲線的頂點及附近的點較準確地畫出來,但雙曲線向遠處如何伸展就不是很清楚。從而說明想要準確的畫出雙曲線的圖形只有那四個性質是不行的。
從學生曾經學習過的反比例函數入手,而且可以比較精確的畫出反比例函數的圖像,它的圖像是雙曲線,當雙曲線伸向遠處時,它與x、y軸無限接近,此時x、y軸是的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學生猜想雙曲線有何特征?有沒有漸近線?由于雙曲線的對稱性,我們只須研究它的圖形在第一象限的情況即可。在研究雙曲線的范圍時,由雙曲線的標準方程,可解出,,當x無限增大時,y也隨之增大,不容易發現它們之間的微妙關系。但是如果將式子變形為,我們就會發現:當x無限增大,逐漸減小、無限接近于0,而就逐漸增大、無限接近于1();若將變形為,即說明此時雙曲線在第一象限,當x無限增大時,其上的點與坐標原點之間連線的斜率比1小,但與斜率為1的直線無限接近,且此點永遠在直線的下方。其它象限向遠處無限伸展的變化趨勢就可以利用對稱性得到,從而可知雙曲線的圖形在遠處與直線無限接近,此時我們就稱直線叫做雙曲線的漸近線。這樣從已有知識出發,層層設(釋)疑,激活已知,啟迪思維,調動學生自身探索的內驅力,進一步清晰概念(或圖形)特征,培養思維的深刻性。
利用由特殊到一般的規律,就可以引導學生探尋雙曲線(a>0,b>0)的漸近線,讓學生同樣利用類比的方法,將其變形為,,由于雙曲線的對稱性,我們可以只研究第一象限向遠處的變化趨勢,繼續變形為,,可發現當x無限增大時,逐漸減小、無限接近于0,逐漸增大、無限接近于,即說明對于雙曲線在第一象限遠處的點與坐標原點之間連線的斜率比小,與斜率為的直線無限接近,且此點永遠在直線下方。其它象限向遠處無限伸展的變化趨勢可以利用對稱性得到,從而可知雙曲線(a>0,b>0)的圖形在遠處與直線無限接近,直線叫做雙曲線(a>0,b>0)的漸近線。我就是這樣將漸近線的發現作為重點,充分暴露思維過程,培養學生的創造性思維,通過誘導、分析,巧妙地應用極限思想導出了雙曲線的漸近線方程。這樣處理將數學思想滲透于其中,學生也易接受。
(2)證明
如何證明直線是雙曲線(a>0,b>0)的漸近線呢?
啟發思考①:首先,逐步接近,轉換成什么樣的數學語言?(x→∞,d→0)
啟發思考②:顯然有四處逐步接近,是否每一處都進行證明?
啟發思考③:鎖定第一象限后,具體地怎樣利用x表示d
(工具是什么:點到直線的距離公式)
啟發思考④:讓學生設點,而d的表達式較復雜,能否將問題進行轉化?
分析:要證明直線是雙曲線(a>0,b>0)的漸近線,即要證明隨著x的增大,直線和曲線越來越靠攏。也即要證曲線上的點到直線的距離
|mQ|越來越短,因此把問題轉化為計算|mQ|。但因|mQ|不好直接求得,因此又可以把問題轉化為求|mN|。
啟發思考⑤:這樣證明后,還須交代什么?
(在其他象限,同理可證,或由對稱性可知有相似情況)
引導學生層層深入的進行探究,從而更深刻的理解雙曲線的漸近線的發現及證明過程。
(3)深化
再來研究實軸在y軸上的雙曲線(a>0,b>0)的漸近線方程就會變得容易很多,此時可利用類比的方法或者利用對稱性得到焦點在y軸上的雙曲線的漸近線方程即為。
這樣,我們就完滿地解決了畫雙曲線遠處趨向問題,從而可比較精確的畫出雙曲線。但是如果仔細觀察漸近線實質就是雙曲線過實軸端點、虛軸端點,作平行與坐標軸的直線所成的矩形的兩條對角線,數形結合,來加強對雙曲線的漸近線的理解。
4.離心率的幾何意義
橢圓的離心率反映橢圓的扁平程度,雙曲線離心率有何幾何意義呢?不難得到:,這是剛剛學生在類比橢圓的幾何性質時就可以得到的簡單結論。通過對離心率的研究,同樣也可以使學生進一步加深對漸近線的理解。
由等式,可得:,不難發現:e越小(越接近于1),就越接近于0,雙曲線開口越小;e越大,就越大,雙曲線開口越大。所以,雙曲線的離心率反映的是雙曲線的開口大小。通過對這些性質的探究,就可以更好的理解雙曲線圖形與這些基本量之間的關系,更加準確的作出雙曲線的圖形。
5.例題分析
為突出本節內容,使學生盡快掌握剛才所學的知識。我選配了這樣的例題:
例1.求雙曲線9x2-16y2=144的實半軸長和虛半軸長、頂點和焦點坐標、漸近線方程、離心率。選題目的在于拿到一個雙曲線的方程之后若不是標準式,要先將所給的雙曲線方程化為標準方程,后根據標準方程分別求出有關量。本題求漸近線的方程的方法:(1)直接根據漸近線方程寫出;(2)利用雙曲線的圖形中的矩形框架的對角線得到。加強對于雙曲線的漸近線的應用和理解。
變1:求雙曲線9y2-16x2=144的實半軸長和虛半軸長、頂點和焦點坐標、漸近線方程、離心率。選題目的:和上題相同先將所給的雙曲線方程化為標準方程,后根據標準方程分別求出有關量;但求漸近線時可直接求出,也可以利用對稱性來求解。
關鍵在于對比:雙曲線的形狀不變,但在坐標系中的位置改變,它的那些性質改變,那些性質不變?試歸納雙曲線的幾何性質。
變2:已知雙曲線的漸近線方程是,且經過點(,3),求雙曲線的標準方程。選題目的:在已知雙曲線的漸近線的前提下
高一數學說課稿5
本節課是高中數學第二冊第七章《曲線和圓的方程》第五節《曲線和方程》,這是一節教學研討課,是在大力提倡改革課堂教學模式、提高課堂效益、開發學生智力等多方面能力的前提下開設的,目的是努力尋求一種全新的課堂教學模式,能夠讓信息技術和數學課本知識有效的融合在一起,讓學生知道,學習數學,不僅僅是做題目,而且是研究題目,提高了學生的學習數學的興趣。
一、教材分析
《平面動點的軌跡》這部分內容從理論上揭示了幾何中的“形”與代數中的“數”相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,同時也體現解析幾何的基本思想。軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角平面幾何等基礎知識,其中滲透著運動與變化、數形結合的等思想,是中學數學的重要內容,也是歷年高考數學考查的重點之一。
二、對數學目標的闡述
“以知識為載體,注重學生的能力、良好的意志品質及合作學習精神的培養”是本教學設計中貫穿始終的一個重要教學理念。為此本課的知識目標設定為三條:
(1)了解解析幾何的基本思想、明確它所研究的基本問題
(2)了解用坐標法研究幾何問題的有關知識和觀點
(3)初步掌握根據已知條件求曲線方程的方法,同時進一步加深理解“曲線的方程、方程的曲線”的概念。
三、對學生能力目標的培養
本節課的設計著眼點是讓學生集體參與、主動參與,培養學生動手、動腦的能力,鼓勵多向思維、積極活動、勇于探索。知識的學習和能力的提高是同步的,從本課的設計不難看出對學生能力目標是:通過自我思考、同桌交流、師生互議、實際探究等課堂活動,獲取知識。同時,培養學生探究學習、合作學習的意識,強化數形結合、化歸與轉化等數學思想,提高分析問題、解決問題的能力。
四、對學生個性品質和情感教育的培養
設計者試圖利用動畫演示軌跡的形成過程,使課堂氣氛活躍,讓學生感受動點軌跡的動態美,使課堂教學內容形象化,從而激發學生學習數學的興趣和學好教學的信心。而鼓勵學生積極思考、勇于探索,培養學生良好的意志品質,樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣則是本節課要達成的個性品質和情感目標。
五、關于教學方法與教學法手段的選用
新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上知識的傳授者和學生的管理者,改變成為以學生為中心,讓學生真正成為學習的主人而不是知識的奴隸,基于此,根據本節課的教學內容和學生的實際水平,采用的是引導發現法和計算機軟件——《幾何畫板》實驗輔助教學。
六、、關于教學程序的設計
1、創設情景,引入課題
平面解析幾何的核心是“坐標法”,用代數的方法研究幾何圖的性質。主要包括兩個部分:求曲線的.方程;通過研究方程研究曲線的性質。在傳統的教學中,動點并不動。《幾何畫板》的特點是“動”。可以在動態中觀察數學現象,探究幾何圖形的性質。在《幾何畫板》支持下,“動點”真的動起來了。在動態中觀察,觀察變動中不變的規律觸及到問題的本質,可以更好地讓學生參與到教學過程中來。讓學生動手操作,發現數學規律。
例 1、已知點P是圓上的一個動點,點A是X軸上的定點,坐標是(12、0)當點P在圓上運動時,線段PA的中點M的軌跡是什么?
第一步:讓學生借助畫板動手探究軌跡
第二步:要求學生求出軌跡方程、驗證軌跡
解法一:設M(x,y)則,由點p是圓上的點得,,化簡得:
2、問題提出,引入新課
例2、已知B是定圓A內一定點,C是圓上的動點,L是線段BC的垂直平分線。交點為P,M為L與直徑CD的交點,當點C在圓上運動時,探索直線L上哪個點的運行時橢圓?
設計意圖:借助數學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發現疑問,更容易激發學生學習的熱情,促使他們主動發現、主動學習。
第一步:分解動作,向學生提出幾個問題:
問題1:當點C在圓上運動時,直線 圍成一個橢圓,上哪個點在這個橢圓上?(為什么)注意觀察點P與點M
問題2:CD是圓A的直徑,直線L與CD交于M,求M的軌跡方程。
問題3、改變點B的位置,當點B在圓外時,你的結論該做怎樣的修改呢?
學生活動:第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起)
第二步:課堂完成學生歸納出來的問題1,問題2和3課后完成。
整個教學過程,體現了四個統一:既學習書本知識與投身實踐的統一、書本學習與現代信息技術學習的統一、書本知識與資源拓展的統一、課堂學習與課外實踐的統一。本節課學生精神飽滿、興趣濃厚、合作積極,與教師保持良好的互動,還不時產生一些爭執,給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。
通過本節課的學習,學生不僅掌握了動點軌跡的求法,而且通過作圖掌握了《幾何畫板》這個軟件,通過方程的推導,更加熟悉了動點軌跡的求法,而且通過作圖掌握了幾何的基本思想“以數論形,數形結合”,提高了運用數形結合、等價轉化等數學思想方法解決問題的能力,通過思路的探索和軌跡方程的推導,學生的思維品質得以優化,學會辯證地看待問題,享受了數學的美。
高一數學說課稿6
一、本節課內容的數學本質
本節課的主要任務是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學生學會借助計算器用二分法求給定精確度的方程的近似解。通過探究讓學生體驗從特殊到一般的認識過程,滲透逐步逼近和無限逼近思想(極限思想),體會“近似是普遍的、精確則是特殊的”辯證唯物主義觀點。引導學生用聯系的觀點理解有關內容,通過求方程的近似解感受函數、方程、不等式以及算法等內容的有機結合,使學生體會知識之間的聯系。
所以本節課的本質是讓學生體會函數與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。
二、本節課內容的地位、作用
“二分法”的理論依據是“函數零點的'存在性(定理)”,本節課是上節學習內容《方程的根與函數的零點》的自然延伸;是數學必修3算法教學的一個前奏和準備;同時滲透數形結合思想、近似思想、逼近思想和算法思想等。
三、學生情況分析
學生已初步理解了函數圖象與方程的根之間的關系,具備一定的用數形結合思想解決問題的能力,這為理解函數零點附近的函數值符號提供了知識準備。但學生僅是比較熟悉一元二次方程解與函數零點的關系,對于高次方程、超越方程與對應函數零點之間的聯系的認識比較模糊,計算器的使用不夠熟練,這些都給學生學習本節內容造成一定困難。
四、教學目標定位
根據教材內容和學生的實際情況,本節課的教學目標設定如下:
通過具體實例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會用二分法求某些具體方程的近似解,從中體會函數與方程之間的聯系,體會程序化解決問題的思想。
借助計算器用二分法求方程的近似解,讓學生充分體驗近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學習算法做知識準備.
通過探究、展示、交流,養成良好的學習品質,增強合作意識。
通過具體問題體會逼近過程,感受精確與近似的相對統一。
五、教學診斷分析
“二分法”的思想方法簡便而又應用廣泛,所需的數學知識較少,算法流程比較簡潔,便于編寫計算機程序;利用計算器和多媒體輔助教學,直觀明了;學生在生活中也有相關體驗,所以易于被學生理解和掌握。 但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。
六、教學方法和特點
本節課采用的是問題驅動、啟發探究的教學方法。
通過分組合作、互動探究、搭建平臺、分散難點的學習指導方法把問題逐步推進、拾級而上,并輔以多媒體教學手段,使學生自主探究二分法的原理。
本節課特點主要有以下幾方面:
1、以問題驅動教學,激發學生的求知欲,體現了以學生為主的教學理念。
2、注重與現實生活中案例相結合,讓學生體會數學來源于現實生活又可以解決現實生活中的問題。
以李詠主持的幸運52猜商品價格來創設情境,不僅激發學生學習興趣,學生也在猜測的過程中體會二分法思想。
3、注重學生參與知識的形成過程,使他們“聽”有所思,“學”有所獲。
本節課中的每一個問題都是在師生交流中產生,在學生合作探究中解決,使學生經歷了完整的學習過程,培養合作交流意識。
4、恰當地利用現代信息技術,幫助學生揭示數學本質。
本節課中利用計算器進行了多次計算,逐步縮小實數解所在范圍,精確度的確定就顯得非常自然,突破了教學上的難點,提高了探究活動的有效性。整個課件都以PowerPoint為制作平臺,演示Excel
程序求方程的近似解,界畫活潑,充分體現了信息技術與數學課程有機整合。
七、預期效果分析
以方程的根與函數的零點知識作基礎,通過對求方程近似解的探究討論,使學生主動參與數學實踐活動;采用多媒體技術,大容量信息的呈現和生動形象的演示,激發學生學習興趣、激活學生思維,掌握二分法的本質,完成教學目標。
另外盡管使用了科學計算器,但求一個方程的近似解也是很費時的,學生容易出現計算錯誤和產生急躁情緒;況且問題探究式教學跟學生的學習程度有很大關系,各小組的探究時間存在差異,教師要適時指導。
高一數學說課稿7
各位領導 教師同仁:
我說課的內容是正切函數的性質和圖像。
教材理解分析
《1,4.3 正切函數的性質與圖像》是人教社A版必修4第一章第4節的.第3小節的內容。是前面系統的學習了正弦與余弦函數的概念,圖像及其性質以后滴內容
學習目標
1、掌握正切函數的性質及其應用
2、理解并掌握作正切函數圖象的方法;
3、體會類比、換元、數形結合等思想方法。
學情分析
由于我們文科平行班基礎不太好加之學習函數的圖像及性質又是一個難點,自主學習必然會出現困難。加之教學時間緊,任務重,前面地學習也不是很好。
根據教材結構和學情我對具體地教學過程和設計作如下說明:
在學法上大膽采用高效課堂模式,讓學生探究,大膽去掉非主線知識內容,內容程序盡量簡潔明了,一課一得,便于學生掌握。教學過程共有這樣幾個方面
一、復習引入
(1)畫出下列各角的正切線
(2)復習相關誘導公式
二、探究新知
探究一 正切函數的性質
探究二 正切函數的圖像
三、新知運用
例1 求函數的定義域、周期和單調區間.
四、課堂練習
1、求函數y=tan3x的定義域,值域,單調增區間。
2、 觀察正切曲線,寫出滿足下列條件x的范圍:
(1) ; (2) ; (3)
五.小結與課后作業
高一數學說課稿8
一、教材分析
函數的單調性是函數的重要性質.從知識的網絡結構上看,函數的單調性既是函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性等內容的基礎,在研究各種具體函數的性質和應用、解決各種問題中都有著廣泛的應用.函數單調性概念的建立過程中蘊涵諸多數學思想方法,對于進一步探索、研究函數的其他性質有很強的啟發與示范作用.
根據函數單調性在整個教材內容中的地位與作用,本節課教學應實現如下教學目標:
知識與技能使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;
過程與方法引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
情感態度與價值觀在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
根據上述教學目標,本節課的教學重點是函數單調性的概念形成和初步運用.雖然高一學生已經有一定的抽象思維能力,但函數單調性概念對他們來說還是比較抽象的。因此,本節課的學習難點是函數單調性的概念形成。
二、教法學法
為了實現本節課的教學目標,在教法上我采取了
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達。
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
三、教學過程
函數單調性的概念產生和形成是本節課的難點,為了突破這一難點,在教學設計上采用了下列四個環節。
(一)創設情境,提出問題
(問題情境)(播放中央電視臺天氣預報的音樂)。如圖為某地區20xx年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動]引導學生觀察圖象,提出問題:
問題1:說出氣溫在哪些時段內是逐步升高的或下降的?
問題2:怎樣用數學語言刻畫上述時段內“隨著時間的增大氣溫逐漸升高”這一特征?
[設計意圖]問題是數學的心臟,問題是學生思維的開始,問題是學生興趣的開始。這里,通過兩個問題,引發學生的進一步學習的好奇心。
(二)探究發現建構概念
[學生活動]對于問題1,學生容易給出答案。問題2對學生來說較為抽象,不易回答。
[教師活動]為了引導學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述.引導學生回答:對于自變量8<10,對應的函數值有1<4。舉幾個例子表述一下。然后給出一個鋪墊性的問題:結合圖象,請你用自己的語言,描述“在區間[4,14]上,氣溫隨時間增大而升高”這一特征。
在學生對于單調增函數的特征有一定直觀認識時,進一步提出:
問題3:對于任意的t1、t2∈[4,16]時,當t1 (t1) [學生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發現數量關系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數概念的本質屬性,并嘗試用符號語言進行初步的表述。 [教師活動]為了獲得單調增函數概念,對于不同學生的表述進行分析、歸類,引導學生得出關鍵詞“區間內”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數稱之為單調增函數”,之后由他們集體給出單調增函數概念的數學表述.提出: 問題4:類比單調增函數概念,你能給出單調減函數的概念嗎? 最后完成單調性和單調區間概念的整體表述。 [設計意圖]數學概念的形成來自解決實際問題和數學自身發展的需要。但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程。剛升入高一的學生已經具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數學符號語言精確刻畫概念是本節課的難點。 (三)自我嘗試運用概念 1.為了理解函數單調性的概念,及時地進行運用是十分必要的。 [教師活動]問題5:(1)你能找出氣溫圖中的單調區間嗎?(2)你能說出你學過的函數的單調區間嗎?請舉例說明。 [學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調減區間和一個單調增區間.對于(2),學生容易舉出具體函數如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數的草圖,根據函數的圖象說出函數的單調區間。 [教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調區間,并指出學生回答問題時可能出現的錯誤,如:在敘述函數的單調區間時寫成并集。 [設計意圖]在學生已有認知結構的基礎上提出新問題,使學生明了,過去所研究的函數的相關特征,就是現在所學的函數的單調性,從而加深對函數單調性概念的理解。 2.對于給定圖象的函數,借助于圖象,我們可以直觀地判定函數的單調性,也能找到單調區間.而對于一般的函數,我們怎樣去判定函數的'單調性呢? [教師活動]問題6:證明在區間(0,+∞)上是單調減函數。 [學生活動]學生相互討論,嘗試自主進行函數單調性的證明,可能會出現不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。 [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的證明過程,糾正出現的錯誤,規范書寫的格式。 [學生活動]學生自我歸納證明函數單調性的一般方法和操作流程:取值作差變形定號判斷。 [設計意圖]有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究。 (四)回顧反思深化概念 [教師活動]給出一組題: 1、定義在R上的單調函數f(x)滿足f(2)>f(1),那么函數f(x)是R上的單調增函數還是單調減函數? 2、若定義在R上的單調減函數f(x)滿足f(1+a) [學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結本節課的內容和方法。 [設計意圖]通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對函數單調性認識的再次深化。 [教師活動]作業布置: (1)閱讀課本P34-35例2 (2)書面作業: 必做:教材P431、7、11 選做:二次函數y=x2+bx+c在[0,+∞)是增函數,滿足條件的實數的值唯一嗎? 探究:函數y=x在定義域內是增函數,函數有兩個單調減區間,由這兩個基本函數構成的函數的單調性如何?請證明你得到的結論。 [設計意圖]通過兩方面的作業,使學生養成先看書,后做作業的習慣。基于函數單調性內容的特點及學生實際,對課后書面作業實施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學生完成作業的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務的同時,拓展自主發展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成。 四、教學評價 學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。教師應當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養成、數學發現的能力,以及學習的興趣和成就感。學生熟悉的問題情境可以激發學生的學習興趣,問題串的設計可以讓更多的學生主動參與,師生對話可以實現師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養學生獨立思考的習慣。讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質的提高,為學生的可持續發展打下基礎。 各位評委、老師: 大家好,我說課的內容是人教A版《普通高中課程標準實驗教科書A版數學必修一》第二章2.2.2《對數函數及其性質》。 我說課的程序主要有教材分析、學情分析、教法與學法、教學過程、板書設計等五個部分。 一、教材分析 本節內容是在學習了指數函數和對數概念后,通過具體實例了解對數函數模型的實際背景,學習對數函數概念進而研究對數函數的圖象和性質。學生已掌握的指數函數的圖象和性質為類比學習對數函數提供了前提,同時對數函數作為常用數學模型在人口、考古等生活生產中有廣泛的應用,為學生進一步學習、參加生產和實際生活提供必要的基礎知識。而本節蘊含的歸納、類比、數形結合的思想為培養學生探究、發現的能力奠定基礎。 《數學課程標準》要求通過具體實例初步理解對數函數的概念,體會對數函數是一類重要的函數模型,能借助計算器或計算機畫出具體對數函數的圖象,探究并了解對數函數的單調性與特殊點。依據以上標準和學生學習發展方面的要求,我制定了如下教學目標: 知識與技能:理解對數函數的概念、掌握對數函數的圖象和性質;培養學生觀察、分析、歸納、類比的能力。 過程與方法:類比指數函數的學習,從特殊到一般,通過對不同底數的對數函數圖象的分析、歸納出對數函數的性質。 情感態度價值觀:培養學生對待知識的科學態度、勇于探索和創新的精神. 結合教學內容和教學目標,考慮到學生對抽象事物的理解可能存在困難,制定如下的教學重點、難點: 重點:對數函數的概念、圖象和性質; 難點:對數函數的圖象、性質,底數a對對數函數的圖象和性質的影響; 二、學情分析 對于高一的學生來說,剛進入一個新的學習階段,有較強的好奇心,且在之前指數函數的學習中已初步掌握了研究函數的方法,但對抽象事物的理解有所欠缺,對對數概念的理解還不夠透徹。 三、教學與學法 教學過程是教師和學生共同參與的過程,要啟發學生自主性學習,充分調動學生的積極性、主動性,通過指數函數的圖象、性質類比學習對數函數的圖象、性質,在教學中引導學生圍繞圖象思考,數形結合,加強直觀教學,同時在例題的講解中,由易到難,由具體到抽象。為有效地滲透數學思想方法,結合所要完成的教學目標,并為激發學生的學習興趣,我采用以引導探究為主,啟發學生思考、分析、歸納,在提出猜想后通過投影儀演示底數變化對對數函數圖象的影響。 老師的教是為學生更好地學,學生是活動的主體,我確定學法為自主探究法,學生在老師的引導下通過觀察、分析做出歸納。 四.教學過程 教學過程分為以下環節: 實例引入、直觀感知——總結類比、形成概念——類比探究、分析歸納——知識應用、提升能力——師生交流、歸納小結——作業布置 (一)實例引入、直觀感知 1、在某細胞分裂過程中,細胞個數y是分裂次數x的函數 ,因此,知道x的值(輸入值是分裂次數)就能求出y的值(輸出值為細胞的個數),這樣就建立了一個細胞個數和分裂次數x之間的函數關系式. 問題一:這是一個怎樣的函數模型類型呢? 設計意圖:復習指數函數 問題二:如果知道了細胞個數y,如何求分裂的次數x呢?這將會是我們研究的哪類問題? 設計意圖:為了引出對數函數 問題三:在關系式 每輸入一個細胞的.個數y的值,是否一定都能得到唯一一個分裂次數x的值呢? 設計意圖:既為了更好地理解函數,也是為了讓學生更好地理解對數函數的概念. 2、 在2.2.1的例6中,考古學家利用 估算出土文物或古遺址的年代,對于每一個C14含量P,通過關系式,都有唯一確定的年代與之對應.同理,對于每一個對數式 中的 ,任取一個正的實數值,均有唯一的值與之對應,所以 的函數。 問題三:你能在以前的學習中找到類似以上兩個函數的例子嗎?(促進學生思考這種函數的特點) 問題四:你能類比指數函數得到此類函數的一般式嗎? 設計意圖:體現了類比和特殊到一般的數學思想 (二)總結類比、形成概念 問題五:你能根據指數函數的定義給出對數函數的定義嗎? (師生共同歸納出對數函數的定義) 問題六: 與 中的x,y的相同之處是什么?不同之處是什么? 設計意圖:促進學生更好地理解對數函數與指數函數的聯系,從而得到對數函數的定義域 (三)類比探究、分析歸納 問題:有了研究指數函數的經歷,你會如何研究對數函數的性質? 設計意圖:提示學生進行類比學習 合作探究1;在同一直角坐標系中畫出下列函數的圖象,并觀察圖象,探求他們之間的關系。 , 合作探究2:結合指數函數的學習經驗,你有什么猜想?在同一坐標系中畫出 與 驗證。 設計意圖:體現“從特殊到一般”、“從具體到抽象”的方法。 教師通過幾何畫板動態演示對數函數圖象隨底數變化的規律,進一步促進學生理解對數函數的圖象特點。 合作探究3:對照指數函數的性質,總結歸納對數函數的性質. (學生討論并交流各自的發現成果,教師結合學生的交流,適時歸納總結,并板書對數函數的性質) (四)知識應用、提升能力 例1:求下列函數的定義域 (1) ( ) (2) ( ) (該題主要考查對數函數 的定義域 ,可在此總結函數定義域的限制) 例2:利用對數函數的性質,比較下列各組數中兩個數的大小: (1) , (2) , (3) , (4) , , 設計意圖:學生通過回顧利用指數函數的有關性質比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當點撥完成解答,最后進行歸納總結比較數的大小常用的方法 思考鞏固:已知 ,比較m,n的大小 設計意圖:該題不僅運用了對數函數的圖象和性質,還培養了學生數形結合、分類討論等數學思想,但有一定難度 (五)師生交流、歸納小結 由學生小結,相互補充完善,教師再次強調對數函數在生活生產中的應用,既首尾呼應又為后續學習對數函數的應用鋪墊。 (六)布置作業 教材P73 練習1,2 設計意圖:練習難度不大,是對本節知識的鞏固。 一、教學背景 1、教材分析 《對數函數及其性質》是人教版普通高中課程數學必修1第二章第二節第二部分內容,對數函數是一類特殊的函數,在實際生產過程中運用很廣泛。同時,通過對對數函數及其圖象和性質的研究,既可以從具體的感性認識上來對函數的圖象和性質更好的理解,也可為以后研究冪函數、三角函數等其它函數的圖象和性質起示范和鋪墊作用。 2、學情分析 剛入高一的學生,仍保留著初中生許多學習特點,能力發展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,對數函數又以對數運算為基礎,同時,初中函數教學要求降低,導致初中生運算能力有所下降,這雙重問題增加了對數函數教學的難度。但在此之前,學生已經學習了指數函數及其性質,學生已經初步對新函數的研究方法有所了解,為本節的學習奠定了基礎。 基于以上分析,我制定如下教學目標及重、難點: 3、教學目標 知識與技能: 初步掌握對數函數的概念、圖象及性質,并應用性質解決簡單數學問題。 過程與方法: 經歷對數函數性質的探索過程,體會函數思想、分類討論思想和轉化思想在解決具體問題中的應用。 情感態度與價值觀: 培養勇于探索的精神,培養學生的`成功意識,合作交流的學習方式,激發學生學習數學、應用數學的興趣。 4、教學重、難點 重點:理解對數函數的概念,掌握對數函數的圖象及性質。 難點:由圖象探究函數性質,應用性質解決具體問題。 二、教學方法及手段 1、教法 根據建構主義的學習理論和新課程標準理念,本節課以自主探究法和講解法為主,以練習法為輔,引導學生自己觀察、歸納、分析,培養學生采用自主探究的方法進行學習,使學生體會學習的樂趣。 2、學法 (1)類比學習:通過指數函數類比學習對數函數。 (2)小組合作學習:將學生分成7個小組,通過小組內討論交流,歸納得出對數函數的圖象和性質。 3、教學手段 采用多媒體輔助教學。 三、教學教程 1、情境引入 通過銀行的復利計算問題,逐步引出對數函數。 設計意圖:情景來源于生活,通過生活中的實例來反應對數函數的重要性,目的在于激發學生學習的興趣,讓每一個學生都主動融入到學習中。 2、新知探索 通過上述模型,讓學生給對數函數下定義。 學生用描點法畫和的圖象,教師再借助于計算機再畫幾個對數函數的圖象,讓學生觀察并總結出一般情況。 以“你們能根據圖象歸納出對數函數的性質嗎?”設問,引導學生能過圖象的特征得出對應的性質。 例比較下列各組數中兩個值的大小: (1)log23.4和log28.5; (2) log0.33.4和log0.38.5; (3) loga3.4和loga8.5(a>0,且a≠1); (4) log23.4和log3.42; (5) log3.42和log0.38.5。 3、鞏固練習 (1)比較大小: lg6________lg8;ln1.3________ (2)比較正數m,n的大小: 若,則m_____n;若,則m_____n. 4、總結提煉 (1)自主探究新知識的方法; (2)本節課應用了哪些數學思想。 5、布置作業 (1)閱讀教材P70~P72,梳理對數函數的概念、圖象、性質等知識點; (2)教材P74—7、8 四、板書設計 2.2.2對數函數及其性質 一、概念例題 二、圖象 三、性質 四、教學反思 一、教材的本質、地位與作用 對數函數(第二課時)是20xx人教版高一數學(上冊)第二章第八節第二課時的內容,本小節涉及對數函數相關知識,分三個課時,這里是第二課時復習鞏固對數函數圖像及性質,并用此解決三類對數比大小問題,是對已學內容(指數函數、指數比大小、對數函數)的延續和發展,同時也體現了數學的實用性,為后續學習起到奠定知識基礎、滲透方法的作用,因此本節內容起到了一種承上啟下的作用. 二、教學目標 根據教學大綱的要求以及本節課的地位與作用,結合高一學生的認知特點確定教學目標如下: 學習目標: 1、復習鞏固對數函數的圖像及性質 2、運用對數函數的性質比較兩個數的大小 能力目標: 1、培養學生運用圖形解決問題的意識即數形結合能力 2、學生運用已學知識,已有經驗解決新問題的能力 3、探索出方法,有條理闡述自己觀點的能力 德育目標: 培養學生勤于思考、獨立思考、合作交流等良好的個性品質 三、教材的重點及難點 對數比大小發揮的是承上啟下的作用,對前一是復習鞏固對數函數的圖像和性質,二是對指數中比大小問題的數學思想及方法的再次體現和應用,對后為解對數方程及對數不等式奠定基礎。所以確定本節課重點:運用對數函數圖像性質比較兩數的大小 教學中將在以下2個環節中突出教學重點: 1、利用學生預習后的心得交流,資源共享,互補不足 2、通過適當的練習,加強對解題方法的掌握及原理的理解 另一方面,學生在預習后上課的情況下,對于課本上知識有了一定的認識,但本節課教師要補充第三類比大小問題———同真異底型,對于學生以小組為單位自主探究有一定的挑戰性。所以確定本節課難點:同真異底的對數比大小 教學中會在以下3個方面突破教學難點: 1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。 2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。 3、本節課采用多媒體輔助教學,節省時間,加快課程進度,增強了直觀形象性。 四、學生學情分析 長處:高一學生經過幾年的數學學習,已具備一定的數學素養,對于已學知識或用過的數學思想、方法有一定的應用能力及應用意識,對于本節課而言,從知識上說,對數函數的圖像和性質剛剛學過,本節課是知識的應用,從數學能力上說,指數比大小問題的解題思想和方法在這可借鑒,另外數形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。 學生可能遇到的困難:本節課從教學內容上來看,第三類對數比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯系認識上還顯不足。 五、教法特點 新課程強調教師要調整自己的角色,改變傳統的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可。基于此,本節課遵循此原則重點采用問題探究和啟發引導式的教學方法。從預習交流心得出發,到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節課采用多媒體輔助教學,節省時間,加快課程進度,增強了直觀形象性。 六、教學過程分析 1、課件展示本節課學習目標 設計意圖:明確任務,激發興趣 2、溫故知新(已填表形式復習對數函數的圖像和性質) 設計意圖:復習已學知識和方法,為學生形成知識間的聯系和框架建立平臺,并為下一步的應用打下基礎。 3、預習后心得交流 1)同底對數比大小 2)既不同底數,也不同真數的對數比大小 以課本例題為例,交流解題思路,題后總結此類型比大小問題的一般方法,而后通過練習加強理解鞏固 設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。 4、合作探究——同真異底型的`對數比大小 以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數的大小關系探究出不同底對數函數在同一直角坐標系中的圖像,以此來解決此類型比大小問題。 設計意圖:這一部分是本節課的難點,探究中充分發揮學生的主動性,培養主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現“授之以魚,不如授之以漁”的教學理念。另外數學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數”。 5、小結 以學生自主小結的方式總結本節課得收獲,教師可引導小結三個方面:所學內容、數學思想、數學方法 6、思考題 以20xx高考題為例,讓學生學以致用,增強數學學習興趣。 7、作業 包括兩個方面: 1、書寫作業 2、下節課前的預習作業 七、教學效果分析 通過本節課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當的提示,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環節中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數學思想、數學方法的小結內容,使這些數學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。 尊敬的各位評委、各位老師大家好!我說課的題目是《函數的單調性》,我將從四個方面來闡述我對這節課的設計。 一、教材分析 函數的單調性是函數的重要性質。從知識的網絡結構上看,函數的單調性既是函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性等內容的基礎,在研究各種具體函數的性質和應用、解決各種問題中都有著廣泛的應用。函數單調性概念的建立過程中蘊涵諸多數學思想方法,對于進一步探索、研究函數的其他性質有很強的啟發與示范作用。 根據函數單調性在整個教材內容中的地位與作用,本節課教學應實現如下教學目標: 知識與技能使學生理解函數單調性的概念,初步掌握判別函數單調性的方法; 過程與方法引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。 情感態度與價值觀在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。 根據上述教學目標,本節課的教學重點是函數單調性的概念形成和初步運用。雖然高一學生已經有一定的抽象思維能力,但函數單調性概念對他們來說還是比較抽象的。因此,本節課的學習難點是函數單調性的概念形成。 二、教法學法 為了實現本節課的教學目標,在教法上我采取了: 1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性。 2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。 3、在鼓勵學生主體參與的同時,不可忽視教師的.主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達。 在學法上我重視了: 1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。 2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。 三、教學過程 函數單調性的概念產生和形成是本節課的難點,為了突破這一難點,在教學設計上采用了下列四個環節。 (一)創設情境,提出問題 (問題情境)(播放中央電視臺天氣預報的音樂)。如圖為某地區20xx年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖: 授課時間: 08 年 9 月 12 日 授課年級、科目、課題: 高一數學 集合的概念 使用教材: 必修1(人教版) 說課教師: 劉華 各位老師同學們,大家好!今天我說課的課題是“集合的概念”,本節內容選自高中數學必修1(人教版),下面我將主要從六個方面介紹我的教學方案。 一、教材分析: 教材的地位和作用: 集合是學習高中數學的重要工具之一,起著承前啟后的作用。本小節首先從初中代數與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節內容的教學重點和難點。 (一)教學重點:集合的基本概念和表示方法,集合元素的特征 (二)教學難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合 二、教學目標: (一)知識目標: (1)使學生初步理解集合的概念,知道常用數集的概念及其記法; (2)使學生初步了解“屬于”關系的意義; (3)使學生初步了解有限集、無限集、空集的意義 (二)能力目標: (1)重視基礎知識的教學、基本技能的訓練和能力的培養; (2)啟發學生能夠發現問題和提出問題,善于獨立思考,學會分析問題和創造地解決問題; (3)通過教師指導,發現知識結論,培養學生抽象概括能力和邏輯思維能力; (三)德育目標:激發學生學習數學的興趣和積極性,陶冶學生的情 操,培養學生堅忍不拔的`意志,實事求是的科學學習態度和勇于創新的精神。 三、學情分析: 針對現在的學生知識遷移能力差、計算能力差的特點,第一節課的內容不要求學生太多的計算,通過大量的舉例讓學生充分掌握集合的基礎知識。 四、教法分析: 為了突出重點、突破難點,本節課主要采用觀察、分析、類比、歸納的方法讓學生參與學習,將學生置于主體位置,發揮學生的主觀能動性,將知識的形成過程轉化為學生親自探索類比的過程,使學生獲得發現的成就感。在這個過程中力求把握好以下幾點: (1)通過實例,讓學生去發現規律。讓學生在問題情景中,經歷知識的形成和發展,力求使學生學會用類比的思想去看待問題。 (2)營造民主的教學氛圍,使學生參與教學全過程。 (3)力求反饋的全面性、及時性,通過精心設計的提問,讓學生的思維動起來,針對學生回答的問題,老師進行適當的點評。 (4)給學生思考的時間和空間,不急于把結果拋給學生,讓學生自己去觀察,分析,類比得出結果,提高學生的推理能力。 五、教學過程 (一)復習導入 (1)簡介數集的發展,復習最大公約數和最小公倍數,質數與和數; (2)教材中的章頭引言; (3)教材中例子(P4)。 (二)講解新課 (1)集合的有關概念 (2) 常用集合及表示方法 (3)元素對于集合的隸屬關系 (4)集合中元素的特性 (三)課堂練習 1下列各組對象能確定一個集合嗎? (1)所有很大的實數的集合 (不確定) (2)好心的人的集合 (不確定) (3){1,2,2,3,4,5} (有重復) (4)所有直角三角形的集合 (是 的) (5)高一(12)班全體同學的集合(是 的) (6)參加2008年奧運會的中國代表團成員的集合(是 的) 2、教材P5練習1、2 六:總結 1.本節主要學習了集合的基本概念、表示符號;一些常用數集及其記法;集合的元素與集合之間的關系;以及集合元素具有的特征. 2.我們在進一步復習鞏固集合有關概念的基礎上,又學習了集合的表示方法和有限集、無限集、空集的概念,同學們要熟練掌握. 一、說教材 (1)說教材的內容和地位 本次說課的內容是人教版高一數學必修一第一單元第一節《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。 (2)說教學目標 根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標: 1.知識與技能:掌握集合的基本概念及表示方法。了解“屬于”關系的意義,掌握集合元素的特征。 2.過程與方法:通過情景設置提出問題,揭示課題,培養學生主動探究新知的習慣,并通過“自主、合作與探究”實現“一切以學生為中心”的理念。 3.情感態度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統一美。同時通過自主探究領略獲取新知識的喜悅。 (3)說教學重點和難點 依據課程標準和學生實際,我確定本課的教學重點為教學重點:集合的基本概念及元素特征。 教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。 二、說教法和學法 接下來則是說教法、學法。 教法與學法是互相聯系和統一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發性原則為出發點,就本節課而言,我采用“生活實例與數學實例”相結合,“師生互動與課堂布白”相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創造條件讓學生參與探究活動,不僅提高了學生探究能力,更讓學生獲得學習的技能和激發學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發現、合作交流、歸納總結等。 總之,不管采取什么教法和學法,每節課都應不斷研究學生的學習心理機制,不斷優化教師本身的教學行為,自始至終以學生為主體,為學生創造和諧的課堂氛圍。 三、說教學過程 接著我來說一下最重要的部分,本節課的教學過程: 這節課的流程主要分為六個環節:創設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業布置(反饋矯正)。 上述六個環節由淺入深,層層遞進. 多層次、多角度地加深對概念的理解. 提高學生學習的興趣,以達到良好的教學效果。 第一環節:創設問題情境,引入目標 課堂開始我將提出兩個問題: 問題1:班級有20名男生,16名女生,問班級一共多少人? 問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽? 這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節課主要形式。 待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。 安排這一過程的意圖是為了從實際問題引入,讓學生了解數學來源于實際。從而激發學生參與課堂學習的欲望。 很自然地進入到第二環節:自主探究讓學生閱讀教材,并思考下列問題: (1)有那些概念? (2)有那些符號? (3)集合中元素的特性是什么? 安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養學生的探究能力。 讓學生自主探究之后將進入第三環節:討論辨析 小組合作探究(1) 讓學生觀察下列實例 (1)1~20以內的所有質數; (2)所有的正方形; (3)到直線 的距離等于定長 的所有的點; (4)方程 的.所有實數根; 通過以上實例,辨析概念: (1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而 集合中的每個對象叫做這個集合的元素。 (2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C?表示,而元素用小 寫的拉丁字母a,b,c?表示。 小組合作探究(2)——集合元素的特征 問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征? 問題4:某單位所有的“帥哥”能否構成一個集合?由此說明什么? 集合中的元素必須是確定的 問題5:在一個給定的集合中能否有相同的元素?由此說明什么? 集合中的元素是不重復出現的 問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的 我如此設計的意圖是因為:問題是數學的心臟,感受問題是學習數學的根本動力。 小組合作探究(3)——元素與集合的關系 問題7:設集合A表示“1~20以內的所有質數”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中? 問題8:如果元素a是集合A中的元素,我們如何用數學化的語言表達? a屬于集合A,記作a∈A 問題9:如果元素a不是集合A中的元素,我們如何用數學化的語言表達? a不屬于集合A,記作a?A 小組合作探究(4)——常用數集及其表示方法 問題10:自然數集,正整數集,整數集,有理數集,實數集等一些常用數集,分別用什么符號表示? 自然數集(非負整數集):記作 N 正整數集:記作 N或 N? 整數集:記作 Z 有理數集:記作 Q 實數集:記作 R 設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發,從而不斷完善自己的知識結構。 第四環節:理論遷移 變式訓練 1.下列指定的對象,能構成一個集合的是 ① 很小的數 ② 不超過30的非負實數 ③ 直角坐標平面內橫坐標與縱坐標相等的點 ④ π的近似值 ⑤ 所有無理數 A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④ 第五環節:課堂小結,自我評價 1.這節課學習的主要內容是什么? 2.這節課主要解釋了什么數學思想? 設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統.教師用激勵性的語言加一點評,讓學生的思想敞亮的發揮出來。 第六環節:作業布置,反饋矯正 1.必做題 課本習題1.1—1、2、3。 2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數a 的值。 設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。 四、板書設計 好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下: 集 合 1.集合的概念 4.范例研究 2.集合元素的特征 (學生板演) 3.常見集合的表示? 以上,我是從教材、教法和學法、教學過程和板書設計四個方面對本課進行了說明,我的說課到此結束,謝謝各位評委老師,并請各位評委老師指正! 一、教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。 二、目標分析: 教學重點。難點 重點:集合的含義與表示方法。難點:表示法的恰當選擇。 教學目標 1、知識與技能 (1)通過實例,了解集合的含義,體會元素與集合的屬于關系; (2)知道常用數集及其專用記號; (3)了解集合中元素的確定性。互異性。無序性; (4)會用集合語言表示有關數學對象; 2、過程與方法 (1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。 (2)讓學生歸納整理本節所學知識。 3、情感。態度與價值觀 使學生感受到學習集合的必要性,增強學習的積極性。 三、教法分析 1、教學方法:學生通過閱讀教材,自主學習。思考。交流。討論和概括,從而更好地完成本節課的教學目標。2、教學手段:在教學中使用投影儀來輔助教學。 四、過程分析 (一)創設情景,揭示課題 1、教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。 (2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征? 引導學生互相交流。與此同時,教師對學生的活動給予評價。 2、活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征 由此引出這節要學的內容。 設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊 (二)研探新知,建構概念 1、教師利用多媒體設備向學生投影出下面7個實例: (1)1—20以內的所有質數; (2)我國古代的四大發明; (3)所有的安理會常任理事國; (4)所有的正方形; (5)海南省在20xx年9月之前建成的所有立交橋; (6)到一個角的兩邊距離相等的所有的點; (7)國興中學20xx年9月入學的高一學生的全體。 2、教師組織學生分組討論:這7個實例的共同特征是什么? 3、每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。 4、教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示。 設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神 (三)質疑答辯,發展思維 1、教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難。使學生明確集合元素的三大特性,即:確定性。互異性和無序性。只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等。 2、教師組織引導學生思考以下問題: 判斷以下元素的全體是否組成集合,并說明理由: (1)大于3小于11的偶數;(2)我國的'小河流。讓學生充分發表自己的建解。 3、讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由。教師對學生的學習活動給予及時的評價。 4、教師提出問題,讓學生思考 b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學, 高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。 如果a是集合A的元素,就說a屬于集合A,記作a?A。 如果a不是集合A的元素,就說a不屬于集合A,記作a?A。 (2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國。日本與集合A的關系分別是什么?請用數學符號分別表示。 (3)讓學生完成教材第6頁練習第1題。 5、教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號。并讓學生完成習題1。1A組第1題。 6、教師引導學生閱讀教材中的相關內容,并思考。討論下列問題: (1)要表示一個集合共有幾種方式? (2)試比較自然語言。列舉法和描述法在表示集合時,各自的特點?適用的對象是什么? (3)如何根據問題選擇適當的集合表示法? 使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。 設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。 (四)鞏固深化,反饋矯正 教師投影學習: (1)用自然語言描述集合{1,3,5,7,9};(2)用例舉法表示集合A?{x?N|1?x?8} (3)試選擇適當的方法表示下列集合:教材第6頁練習第2題。 設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象 (五)歸納小結,布置作業 小結:在師生互動中,讓學生了解或體會下例問題: 1、本節課我們學習了哪些知識內容? 2、你認為學習集合有什么意義? 3、選擇集合的表示法時應注意些什么? 設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。 作業:1、課后書面作業:第13頁習題1.1A組第4題。 2、元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種 呢?如何表示?請同學們通過預習教材。 五\板書分析 【高一數學說課稿】相關文章: 高一數學說課稿06-07 高一物理說課稿01-13 高一語文的說課稿10-14 高一年級數學下冊說課稿模板11-11 小學數學的說課稿04-19 數學說課稿01-06 高一語文說課稿01-14 高一英語說課稿優秀范例12-10 高一《力合成》物理說課稿03-03高一數學說課稿9
高一數學說課稿10
高一數學說課稿11
高一數學說課稿12
高一數學說課稿13
高一數學說課稿14
高一數學說課稿15