- 相關推薦
作為一位優秀的人民教師,通常需要用到說課稿來輔助教學,借助說課稿可以更好地組織教學活動。怎么樣才能寫出優秀的說課稿呢?下面是小編精心整理的《向量加法》說課稿,僅供參考,大家一起來看看吧。
《向量加法》說課稿1
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學情分析:
學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學習本節內容的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、通過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、通過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法
本節采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個環節①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學生認識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易接受,也使學科間的滲透發揮了作用,加深了學生對向量加法的平行四邊形法則的“起點相同”這一特點的認識,例1的講解使學生認識到當表示向量的.有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,而且銜接自然,能夠使學生對比地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
。3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。”引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不知道怎樣做。但是學生學過有理數加法中的異號兩數相加:“異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號!鳖惐犬愄杻蓴迪嗉樱麄儠幂^長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導學生嘗試運用三角形法則去做,發現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則。
通過以上幾個環節的討論,可以作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:通過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。
(4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
、诮Y合律:結合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結內容,使學生印象更深。
。1)平行四邊形法則:起點相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個向量的求和。
。3)運算律
《向量加法》說課稿2
各位評委老師:
大家好!我今天說課的課題是《平面向量的加法、減法和數乘向量》、
下面我從教材分析、學情分析、教學目標及重難點等六個方面進行說明、
一、教材分析:
我選用的教材是由江蘇教育出版社出版,馬復教授主編的“江蘇省職業學校文化課教材《數學》(基礎模塊·下冊)”、
《平面向量》具有數形雙重性,不僅能方便地解決一些平面幾何問題,而且能幫助我們找到解析幾何中一些點的坐標之間的代數關系;平面向量的運算巧妙地把量的大小與方向結合到一起,為幾何圖形的角度計算提供了一個很好的代數工具;平面向量是《電工基礎》中交流電電路分析和《工程力學》中力的分析、計算的主要工具、
《平面向量》安排在第七章,前承三角函數,后啟直線與圓的方程、第1節通過實例引入了向量的有關概念,為《平面向量的加法、減法和數乘向量》的學習奠定了基礎、本節介紹了是平面向量的三種運算,為進一步學習向量知識提供了準備、
二、學情分析:
我班學生是中職電子專業一年級學生,他們已初步了解了矢量的合成;學習了向量的有關概念;運用到了數形結合的方法;通過一學期的共同努力,學生已具有一定的自主學習與合作學習相結合的意識;但他們動手能力不夠強,數學表達和交流的能力欠缺、
三、教學目標:
結合教材和學情,我確定本節的教學目標為:
。1)理解平面向量的加法、減法和數乘向量的相關運算,并理解其代數、幾何意義,掌握各類運算的代數式運算的特點、
。2)通過動手作圖,進一步滲透數形結合的思想;通過學生探究,培養學生的合作意識、
重點:向量加法兩個運算法則,用代數式、三角形法則和平行四邊形法則求和向量,把減法運算轉化為加法運算,用運算律進行向量的數乘運算、
難點:把向量的減法運算轉化為加法運算,向量數乘的幾何意義、
四、教法學法:
根據教材和學生的具體學情,本節主要借助情境激趣、啟發引導等形式組織教學,并借助探究、小組合作、練習等方法組織學生學習、
五、教學過程:
為達成本節目標,將本節內容分解成4個課時,五個任務、
安排了新課導入、任務落實、思考交流等七個環節來實施教學、
具體步驟如下:
1、首先,復習向量的有關概念,溫故而知新、再創設問題情境導入新課、
【通過位移的變化引出向量的加法,初步體會向量相加的概念、】
2、第2個環節是任務落實,目的是讓學生通過反復練習,在“做中學,學中做”,從而突出了重點、突破了難點、
任務1是“會用向量加法的三角形法則求和向量”
板書向量加法的定義,并結合圖形講解向量加法的定義,從代數形式和幾何形式兩方面強調向量加法的三角形法則(首尾相接,自始至終)、
【板書能突出重點;借助圖形直觀理解向量加法的三角形法則(首尾相接,自始至終),滲透數形結合的思想、】
然后,通過試試看引出向量加法的交換律,讓學生類比實數加法的運算律,遷移出向量加法的運算律,并結合圖形講解、
【讓學生初步體驗向量加法的三角形法則(首尾相接,自始至終);借助圖形,理解向量加法的運算律,培養學生觀察、類比能力、】
接著通過2組例題“用向量加法的三角形法則作不共線向量和共線向量的和向量”,進一步感知、應用向量加法的三角形法則、
【學生通過動手操作,體驗了“首尾相接,自始至終”,理解向量的加法運算;通過模仿練習,檢測學習效果,讓學生享受到成功的喜悅、】
課堂上部分學生平移時沒有注意“大小不變,方向不變”;作反向向量的和向量時出現了“搞不清和向量是哪一個”的現象,我在黑板上用不同顏色的粉筆標出向量,強調“首尾相接,自始至終”、
任務2是“會用向量加法的平行四邊形法則求和向量”
通過拉伸彈簧的實驗,遷移到向量加法的平行四邊形法則,教師動手作圖并讓學生模仿,強調“加向量共起點,和向量是以它們作為鄰邊的平行四邊形的共起點的對角線所在向量”,初步體會向量加法的平行四邊形法則、
然后,通過一組例題“用向量加法的平行四邊形法則作不共線向量的和向量”,讓學生通過動手操作,理解向量加法的平行四邊形法則,培養學生動手能力、
接著讓學生解決教材上的思考交流、通過學生思考、交流,教師啟發引導,得出平行四邊形法則和三角形法則的區別和聯系,比較得出用代數式求兩個和向量的特點、
任務3是“會用向量減法的三角形法則求差向量”
通過相反向量和向量的加法運算引出向量的減法運算;板書向量減法的定義,并結合圖形講解,從代數形式和幾何形式兩方面強調向量減法的三角形法則(共起點,連終點,指向被減)、
【借助圖形直觀理解向量減法的三角形法則(共起點,連終點,指向被減),滲透數形結合的思想、】
然后,通過學生觀察作業評講中的圖形和向量減法的.幾何圖形,并類比實數的加減運算,遷移出向量的減法是向量加法的逆運算、這里,我要求學生解決教材上的思考交流、
【借助圖形直觀感知,培養學生識圖能力;理清向量加減運算的關系,培養學生類比和遷移能力、】
例4是用向量減法的三角形法則作不共線向量的差向量,并讓學生用向量加法驗向量減法、
【學生通過動手操作,體驗了“共起點,連終點,指向被減”,提高了動手能力;借助向量加法驗向量減法,一方面檢查作圖正確性,另一方面深化對向量加減法的理解、】
通過模仿練習,檢測學習效果,讓學生享受到成功的喜悅、
這樣,對“把向量的減法運算轉化為加法運算”這個難點進行了突破、
例5是借助平行四邊形,鞏固向量減法的三角形法則,同時復習向量加法的平行四邊形法則,提高學生識圖能力、
模仿練習是通過學生自評,互評和師評的方式完成,充分體現學生的主體作用和教學評價的多樣化、
任務4是“形成向量數乘的概念,會作數乘向量”
通過質點運動問題,從加法的特例(即幾個相同的向量相加)入手,師生共同歸納出向量數乘的概念,結合圖形讓學生直觀理解數乘向量的大小和方向;并用試試看進一步辨析數乘向量的概念,加深學生對數乘向量的大小和方向的理解、
然后,通過一組例題“在方格紙中作數乘向量”,進一步感知、應用向量數乘的概念、
【學生通過動手操作,體驗了數乘向量的大小和方向,提高了動手能力;對“數乘向量的幾何意義”這個難點進行了突破、】
課堂上不少學生在作“”時無處下手,小組交流時有學生提出,其實就是作兩個向量的差向量;我當即肯定了他們,并提醒學生“共起點,連終點,指向被減”、
任務5是“會用運算律進行向量數乘運算”
借助填空的形式,師生共同探究出數乘向量滿足的運算律、
【體現了從特殊到一般的數學思想、】
接著,通過一組例題讓學生在“做中學,學中做”,會用運算律進行向量數乘運算、
課堂上不少學生出現了“解:=”和向量的書寫錯誤,我用實物投影反應在屏幕上,讓學生糾錯,進一步樹立解題規范的思想、
3、思考交流:目的是【通過學生小組合作,深化對向量共線以及向量數乘的大小和方向的理解,培養學生數學交流和表達的能力、】
4、問題解決:【借助平行四邊形,鞏固向量加法、減法和數乘運算,培養學生識圖和綜合應用知識的能力、】
5、課堂檢測:目的是【檢測本節重點內容的掌握情況,以便查漏補缺、】
6、通過師生共同小結,構建完整的知識體系,培養學生歸納能力、
7、作業布置:【鞏固所學內容,并對所學內容的檢測與反饋、】
這是我的板書設計:
六、教學反思:
用口訣讓學生理解向量的加減運算法則;任務1中讓學生觀察圖形發現向量加法滿足的運算律,與課堂檢測前后呼應;任務3中設計巧妙,突破了“把向量的減法運算轉化為加法運算”這個重點和難點、
存在問題:對合作探究的能力上把握不夠準確,導致在導入環節所花時間與預設有所出入、
改進的措施:在以后的教學中,還需在學情把握上多下功夫、
我的說課到此結束,謝謝各位評委老師!