您的位置:群走網>教學總結>數學學習方法總結
數學學習方法總結
更新時間:2024-07-16 15:58:22
  • 相關推薦
數學學習方法總結(合集15篇)

  總結是指對某一階段的工作、學習或思想中的經驗或情況進行分析研究,做出帶有規律性結論的書面材料,它可以有效鍛煉我們的語言組織能力,因此我們要做好歸納,寫好總結。你所見過的總結應該是什么樣的?下面是小編為大家收集的數學學習方法總結,僅供參考,歡迎大家閱讀。

數學學習方法總結1

  復習是學生完成學習任務的必要環節。學生通過復習,將學過的知識進行回顧、歸納、總結,從而達到加深理解,系統吸收、靈活運用的目的。復習的效率和效果在很大程度上取決于復習方法是否恰當、科學,學生學習的積極性是否得以充分調動。

  期末復習,容易流于兩個極端:一是天天模擬考,逐人逐課、逐項過關,教師忙于講、改、評,學生忙于做、聽、抄、背,成天圍著老師轉,師生均有身心俱累,不堪重負之感;一是認為復習就是將過去學過的知識溫習一遍,把所有做過的作業重新抄一遍,學生非抄即背,非寫即讀,這讓學生機械枯燥,味同嚼蠟。上述兩種方法,由于學生在學習過程中處于被動地位,雖然終日忙忙碌碌,但學習效率、效果難如人意。有鑒于此,在期中和期末的復習里,應注意做好以下工作:

  一、上復習課一般要達到以下的目的要求:

  第一,通過復習,使學生對數學的基礎知識能夠準確熟練地掌握,并能靈活運用。

  第二,通過復習,把學過的知識系統化,使這些知識在學生頭腦中豎成串,橫成鏈,形成知識網絡。

  第三,結合學生實際,通過復習能夠做到堵漏補缺,揚長補短。同時彌補教師在教學中的不足。

  第四,通過復習,使學生在系統深入掌握知識的同時,能進一步提高思維能力,提高分析和解決問題的能力。

  第五,通過復習,進一步培養學生的自學能力,發展獨立思考。刻苦鉆研的精神與仔細計算書寫整潔和自我檢查的良好習慣。

  二、怎樣具體上好復習課

  首先根據前一段所學內容和學生的實際情況制訂一個復習計劃。復習前教師將前面所教過的知識做一番綜合整理,系統歸類,縱橫溝通,找出知識的重點、難點和學生易混易錯之處。同時對學生實際掌握知識的情況,做一個切實的估計,如果情況不甚明了,可以進行一次書面摸底(復蓋面較全,突出重點而又有不同層次),將結果進行整理分析,從而確定哪些知識可以一帶而過,哪些知識需要重點復習。這樣確定了復習內容,明確了目的要求,再考慮合適的方式方法,從而訂出一個切實可行的復習計劃。

  計劃訂好之后,如果是期末復習,要向學生宣布計劃。這樣做一方面可以起到進行復習動員的作用,一方面還可以征求一下學生的意見,使計劃更為完善。讓學生知道這樣復習的重要性、復習內容和進程,調動他們積極地與教師配合,使復習發揮最好的效果。

  為了避免重復,下面著重介紹一個六年級總復習計劃的內容安排和部分重點說明。

  六年級期末復習計劃:先縱后橫,分兩個階段進行復習。第一階段,大致按前后學過的知識“塊”復習,每“塊”之后,作一次單元復習,幾個單元之間,加一些階段練習。第二階段,按概念、計算、應用題三大類進行綜合性復習。每類之后作一至二次單項練習。最后安排一些綜合性練習。

  三、巧用復習方法

  在復習中,除了對知識的歸類復習外,要嘗試一種新的復習方法:分三個階段進行,第一階段:教師劃定復習范圍或確定復習項目,學生依據課文、課堂筆記、平時作業及相關學習資料,確定復習重點,列出復習提綱,自行復習,然后根據自己的復習所獲,嘗試擬出模擬試題,做好“擺陣”和“攻陣”的準備。此階段,學習支配權應屬于學生,教師只是相機做一些提示:“想一想,還有那些內容該掌握。”“你還有哪些地方沒復習好。”“你估計誰可能會疏忽什么內容,會搞不透什么問題,你能出個題目考考他嗎?

  第二階段:學生之間開展“攻陣”活動。第一個“陣主”,由學生自薦上場,根據自己所擬的測試題進行“擺陣”,或由全班同學競答,或指人作答,優勝者為下一輪“陣主”,繼續“擺陣”。此階段,教師是導演,是參謀,是顧問,除維持好課堂秩序,調節好課堂氣氛,還要作出客觀的評價:對學生不正確的問法、測法要給以糾正;對沒有掌握好的問題,要引導討論,明辨是非;對提問巧妙、見解獨到、回答正確、表現突出的學生要給以熱情表揚。第三階段,師生共同總結、歸納本次復習要點,交流、推廣先進的學法,幫助確立正確的復習導向。教師針對學生暴露出的薄弱環節,有的放矢地進行強化訓練。

  這種復習方法因為是師生共同活動,打破了以往的課堂教學模式,既發揮了學生的主體作用,又發揮了教師的主導作用,遵循了“以學生為主體,教師為主導”的教學原則。在復習的過程中,學生既是演員,又是觀眾,同時還是“老師”,是評議員,學生間人人平等,個個參與,人人都是主角,人人又都是配角。此外,整個復習的過程中,教師始終以鼓勵為主,鼓勵學生樹立信心,鼓勵學生積極“攻陣”,鼓勵學生大膽發言,鼓勵學生自主探究解決疑難問題。所以這種方法也遵循了民主、平等和鼓勵為主的教學原則。在復習中,學習的主動權完全由學生掌握,學生學得主動,學得積極,不僅讓學生掌握了知識,而且培養了能力。學生通過看、讀、背、思、問、聽、議、答、辯、寫,調動多種感官,手腦并用,既鞏固了知識,又提高了能力。

  四、上好每堂復習課

  每到期末,枯燥無味的復習課往往令老師頭痛,令學生厭煩。究其原因,一是復習內容簡單重復,無法激起學生的'興趣;二是復習形式單調乏味,無法調動學生的積極性。不少教師認為上復習課的目的只是為了鞏固知識,強化記憶,因此忽視了對復習課的深入研究,導致復習效率低下,復習效果差。其實,就小學復習課來講,只要潛心設計,同樣可以很好地體現大綱精神,培養學生的語文綜合能力。要上好小學復習課,我認為應注意以下幾點:

  1、復習內容的整體性復習是把平時在每篇課文中學到的零碎知識系統化,讓學生從整體上把握所學內容。因此,要把復習課與新授課區別開來,切忌逐課逐段地把舊課像回放電影鏡頭似的重復一遍。這就要求教師首先要指導學生從整體上把握整冊教材。在期末總復習之前先把全冊教材中的基礎知識按照要求進行分類,把課文中出現的練習題類型分別列出來(可提示學生參照課本中的“積累運用”和課后練習題,同時注明各題型出現在課本的哪一頁);再把閱讀思考題的類型分門別類地列出來。這樣,使學生從整體上把握了全冊內容,復習就有章可循,有的放矢。其次,教師要采取恰當的復習形式,有些內容可以整冊教材為整體復習,如生字、多音字、誦讀課文等部分基礎知識及作文訓練等;有些內容也可以單元教師為整體復習,如閱讀能力的訓練等。但不管采取哪種形式,都要著眼于各類知識的整體性,使之系統化、綜合化。

  2、復習過程的開放性

  復習課要改變過去那種教師“一言堂”的現象,把更多的時間和空間還給學生,要實施開放式教學,即讓學生自主選擇復習的內容和形式,自己總結復習的方法。教師的任務在于“宏觀調控”,把握復習的方向和進度,進行適時的引導和點撥等。復習時,教師不再布置學生多讀多寫,而要把復習的主動權還給學生,如復習生字:“你認為哪些字比較難記,難寫,應重點復習哪些字;你愿意怎么復習就怎么復習,可以反復練,可以同桌合作聽寫,也可以出一份自測題。”復習閱讀部分:“自己從課外讀物中找一篇文章,想想能提出哪些問題,這些問題該怎樣回答,然后在小組內交流。”每復習一類知識或一個單元讓學生寫一份“復習心得“,總結自己在復習中的新收獲和成功的復習方法。復習完整冊教材后,讓學生每人出一份測試題,在全班內互相檢測。這樣的開放式復習,學生自身受益,全班其他同學受益,教師也了解到更多的學情信息,使指導更具針對性,更有實效。

  3、知識之間的互融性

  在復習過程中,還應注意基礎知識、閱讀、作文等各部分內容之間的內在聯系,使之互相滲透,融為一體。一般情況下,以復習課文段落的閱讀為載體,把基礎知識和寫作的復習融入其中,三者兼顧,能收到事半功倍的效果。教師就一定要深入鉆研教材,發掘課文中蘊含的訓練因素,使復習“牽一發而動全身“,以閱讀為核心,融”雙基“于一體,這樣才能大大提高課堂復習的效率。

  總之,要想上好復習課,提高復習效率,就應該整體把握教材,采取合適的復習形式,關注學生的自主發展,使學生通過主動參與、合作探究,達到對知識的深入把握和綜合能力的提高。-----------

數學學習方法總結2

  一、數學分析內容簡介

  數學分析內容有實數集與函數、數列極限函數極限、函數連續性、導數、微分等。書中內容大都以證明為主,計算部分較少。

  二、課前預習

  課本中每節的內容構架都是相似的,大都為引言、定理、定理的證明、例題、課后習題。了解了構架。那么我們就應該預習重點部分,在時間充足的的情況下,再看其他未看內容。

  引言,不重要,可以瀏覽一下,也可以不看;定理,是核心的內容,不僅看而且要詳細的記住它,所謂詳細的記住是指:把定理的條件不要記錯,這個對證明很有用;接下來是證明,證明影響你對定理的理解程度和運用的熟練程度。可先了解證明思路證明中的計算可以忽略,這樣在老師的講解下就可以明白;最后是例題和習題,例題是對定理最簡單最貼切的應用,所以課前掌握最好,習題可看可不看。

  三、記錄筆記

  在緊張的課堂學習中,要記好自己的筆記讓它清晰工整是不容易的。因為你還在用心聽老師講課,所以要有方法。

  首先,學會省略。減輕課堂負擔,在課后補充。比如:定理,你可以把定理的內容在課本上畫下來,在筆記中留出空白。用這段時間理解并記憶定理。計算也可以省略,留到課下自己計算。

  其次,學會縮寫。在數學分析中,有很多符號語言,比如:∑(加和)∞(無窮大)∵(因為)th(定理)等。

  最后,抓住重點記錄。重點可以分為兩部分:一部分是老師上課所說的重點部分,那一定是精華,所以不要錯過;另一部分是自己不懂或難懂的部分,記錄下來,課下反復思考,復習。

  四、課后復習

  課后復習要從兩方面出發:

  一方面是老師要求掌握的內容,這些內容是考試內容,對期末復習打下良好的基礎。

  另一方面是自己難以掌握的內容,這些內容是最容易忘記的也是應用熟練程度最差的。所以也要作為重點復習。

  復習要有一定的周期性,不能本周看了,之后就讓它冬眠,這樣大腦會一片空白的。可以根據自己的記憶能力,一星期或兩星期看一次。

  五、讀書方法

  讀書要有側重點,數學分析中的定理,有的要著重看它的'證明方法,他的方法是獨特的,可以給自己以借鑒;有的要著重看定理的內容,它的定理應用,推廣會更多一些;有的當做了解內容,因為它可能是為其它定理作鋪墊的。

  其中的例題一定要看,這個會是定理的淺顯應用,對于初學者來說,能夠為以后做難題提供思路和方法。

  六、數學分析中的創新與應用

  在創新方面,一般是定理推廣,它的推廣會被現實生活中應用的更加廣泛。在應用方面,這個很多,一般是競賽中的應用,比如數學建模。在計算機程序中也有很多應用。

  學好數學分析,其天賦是一方面,另一方面就是自己的不斷努力下所積累的做題經驗和邏輯性思維。只有努力才有收獲!

數學學習方法總結3

  1.特值檢驗法

  對于具有一般性的數學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

  例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關于原點O對稱,設直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為

  A.-5/4

  B.-4/5

  C.4/5

  D.2√5/5

  解析:因為要求k1k2的值,由題干暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,通過簡單的畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的`長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故選B。

  2.極端性原則

  將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。

  3.剔除法

  利用已知條件和選擇支所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

  4.數形結合法

  由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

  5.遞推歸納法

  通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。

  6.順推破解法

  利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

  7.逆推驗證法

  將選擇支代入題干進行驗證,從而否定錯誤選擇支而得出正確選擇支的方法。

  8.正難則反法

  從題的正面解決比較難時,可從選擇支出發逐步逆推找出符合條件的結論,或從反面出發得出結論。

  9.特征分析法

  對題設和選擇支的特點進行分析,發現規律,歸納得出正確判斷的方法。例:256-1可能被120和130之間的兩個數所整除,這兩個數是:

  A.123,125

  B.125,127

  C.127,129

  D.125,127

  解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故選C。

  10.估值選擇法

  有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

  高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中數學學科十大搶分技巧,希望大家喜歡。

數學學習方法總結4

  課前預習:一個老生常談的話題,也是提到學習方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預習的能有幾人,課前預習可以使我們提前了解將要學習的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。

  高一數學學習方法

  記筆記:這里主要指的是課堂筆記,因為每節課的時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復習查看。如果對課堂講述的知識不理解的同學更應該做筆記,以便課下細細琢磨,直到理解為止。

  高一數學學習方法

  課后復習:同預習一樣,是個老生常談的話題,但也是行之有效的方法,課堂的`幾十分鐘不足以使我們學習和消化所學知識,需要我們在課下進行大量的練習與鞏固,才能真正掌握所學知識。

  高一數學學習方法

  涉獵課外習題:想要在數學中有所建樹,取得好成績,光靠課本上的知識是遠遠不夠的,因此我們需要多多涉獵一些課外習題,學習它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學。

  高一數學學習方法

  學會歸類總結:學習數學要記得東西很多,尤其是數學公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學會歸類總結,把經常搭配使用的公式等總結在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率(因為公式都綁在一起了嗎)。

  高一數學學習方法

  建立糾錯本:我們在學習數學的時候可能會經常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經常會出錯的題目都集中在一起(當然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現同類題目再出錯的幾率就降低好多。

  高一數學學習方法

  寫考試總結:寫考試總結是一個好習慣,考試總結可以幫我們找出學習之中不足之處,以及我們知識的薄弱環節,從而及時的彌補不足,以及以后的學習方向,關于考試總結怎么寫可以參考小編的“考試總結怎么寫”這篇經驗。

  高一數學學習方法

  培養學習興趣:又是一個老話題了,今天小編好像講了很多“廢話”,雖然情況確實也是如此,但是小編仍然要講,興趣是的老師(又是廢話),只有有了興趣,才會自主自發的進行學習,學習的效率才會提高。當然建立興趣不是一件容易的事情,怎樣才能對數學產生興趣還需自己去發掘,如果實在不能產生興趣,只有掌握以上學習方法了。

數學學習方法總結5

  養成良好的作業習慣

  貪玩是孩子的天性,大多數孩子缺少自我控制能力,所以需要家長們平時多督促孩子認真完成家庭作業,培養他們良好的作業習慣,寫字姿勢。

  家長督促他們寫作業,及時檢查他們的作業,發現沒學會的知識要及時給他們講解,每天的作業認真完成是學習的基本保障。對于學習相對落后的同學,老師會利用課外時間給他補,但是課外時間有限,需要補課的學生較多,老師的精力也有限,這就需要家長們的積極配合。

  有時候,一個孩子忽然學習進步很大,老師就感到很欣慰,一旦孩子學習退步了,一問原因,一般就是家長最近很忙,沒時間管他。老師不希望有一個學生掉隊。

  養成良好的'學習方法

  孩子每個星期回家做作業時要采取這樣的方法:先復習這一星期所學的知識,理通脈絡;然后再把這周的作業做出來,并進行檢查;最后把下周要學的知識進行預習。如果采用這樣的方法并堅持下去,相信孩子的學習一定會有很大進步的。

  養成不懂就問的習慣

  有些題目孩子不懂,家長要耐心地解釋題目的意思,鼓勵孩子不懂就問。但是家長最好不要直接把答案告訴他,只要你把題目解釋清楚,孩子是能夠自己解答的。

  發現成績不夠理想的孩子,往往依賴性比較強,不愿獨立思考,課堂上要么等著老師講解,要么轉來轉去指望其他同學。這些同學在家里做作業也肯定很拖拉。家長要注意正確引導。

數學學習方法總結6

  一、要打好基礎:數學是一門系統性強,前后內容聯系十分緊密的學科。就學校老師教學的內容而言,前面的內容往往是后面學習必備的基礎,前面沒有學好,肯定影響后面知識的學習。假如整數四則計算都不會,怎么去進行小數計算?一步解答的應用題都不會,怎么去解答兩步或多步解答的綜合應用題目呢?……因此,學習數學必須遵循從基礎學起,循序漸進,逐步擴展的原則。如果你在以前的數學基礎沒有打好,那必須把以前欠缺的知識補起來,這一點非常必要。就如同建造高樓大廈,你把根基打好了,才能夠在上面建造一層、二層、三層……。當然要補上所欠缺的基礎知識,是很不容易的。基本的計算(如口算、筆算)、基本概念、基本的數量關系、基本的圖形知識……,還有最基本的數學思想和解決數學問題的基本方法都是基礎。我們首先要弄清楚欠缺在哪里?然后才能有針對的進行補救。

  二、要學會傾聽。數學是一門抽象的學問,思維性和邏輯性很強,是需要同學們動腦子,下功夫去學的'科目。所以上課思想不要開小車,尤其是老師在講解、分析,同學們在回答問題的時候,你要排除一切干擾,做到全神貫注的聽,隨著老師的講解去思維,去發現,去拓展。只有你聽明白了老師和同學的話,你也才能夠分析判斷別人的話是否正確,才能夠學到老師和別的同學分析問題的方法。如:分析數量關系,尋求解決問題途徑時,就如警察破案,步步緊逼,環環緊扣。老師在講解時的每一步,都是下一步分析的基礎,如果你上一步沒有搞清楚,就會影響下一步的分析和理解。由此說明認真聽講是多么的重要。另外,學會傾聽也是一種禮貌,一種尊重,更是一種學習精神。

  、要重視解決問題的方法和過程。學習數學知識,既要重視做題的結果,更要重視解決問題的方法和過程。重結果只會導致模仿、死記硬背、生搬硬套,若遇到陌生題型往往就會束手無策。只有注重解題過程和解題方法的同學,思維才能夠得到真正的鍛煉,才會變得越來越聰明。而實際上有些同學在學習中,只注重某道題目結果等于幾,而不想搞清楚為什么等于幾?比如一些圖形方面的計算公式,我們不但要記住它,更要理解這些公式是怎樣推導出來的,采用什么方法推倒出來的?這樣我們才能夠靈活運用,融會貫通。就算忘記了公式我們可以再推導,再總結出來。我們的分析和推理能力才能夠提高。

  四、要做適當的練習。學習數學離不開做題。孔子說:“學而時習之”、“溫故而知新”。意思是:只有時常溫習過去所學的知識,并整理而找出頭緒,加以鞏固,才能不斷吸收和了解新的東西。不做適當的練習,學到的知識就沒有辦法鞏固。比如我們學習了圓面積的計算,我們也理解了公式推導的過程,但沒有及時去練習,那么學會的計算方法很快可能就忘記了。所以為了更好的掌握舊知識和獲得新的知識,做適當的練習題,是很有必要的。

  五、要敢于提出問題和自己的見解。不管是課本上的知識,還是老師講的,我們要大膽提出與眾不同的看法和問題。不一定老師講的就是最好的方法,我們應該敢于和老師挑戰,敢于和教材挑戰。當然,不思維和不善于思考的人是做不到這一點的。比如在學習用比的知識解決實際問題的時候,你還可以想能不能用別的知識去解答呢?然后你就會發現用學過的整數除法知識或變換為分數知識都可以去解決這種問題。從而你一定會為你的解題方法而得意吧。

  數學的學習方法就為大家整理到這里了,希望大家在學習上養成善于總結的好習慣。

數學學習方法總結7

  數學是一門基礎學科,對于我們的廣大中學生來說,數學水平的高低,直接影響到物理、化學等學科的學習成績,數學的重要地位由此可見。

  怎樣才可以學好數學呢?

  第一點,深刻理解概念。

  概念是數學的基石,學習概念(包括定理、性質)不僅要知其然,還要知其所以然,許多同學只注重記概念,而忽視了對其背

  景的理解,這樣是學不好數學的,對于每個定義、定理,我們必須在牢記其內容的基礎上知道它是怎樣得來的,又是運用到何

  處的,只有這樣,才能更好地運用它來解決問題。

  深刻理解概念,還需要多做一些練習,什么是“多做多練習”,怎樣“多做練習”呢?

  我將在后面的三點中和大家一同探討。

  第二點,多看一些例題。

  細心的朋友會發現,我們老師在講解基礎內容之后,總是給我們補充一些課外例、習題,這是大有裨益的,我們學的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由于我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由于老師補充的例題十分有限,所以我們還應自己找一些來看,看例題,還要注意以下幾點:

  1、不能只看皮毛,不看內涵。

  我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了

  它本來的意義,每看一道題目,就應理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的

  印象,做起來也就容易了,不過要強調一點,除非有十分的把握,否則不要憑借主觀臆斷,那樣會犯經驗主義錯誤,走進死胡同的。

  2、要把想和看結合起來。

  我們看例題,在讀了題目以后,可以自己先大概想一下如何做,再對照解答,看自己的思路有哪點比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,總結經驗。

  3、各難度層次的例題都照顧到。

  看例題要循序漸進,這同后面的“做練習”一樣,但看比做有一個顯著的好處:例題有現成的解答,思路清晰,只需我們循著它的思路走,就會得出結論,所以我們可以看一些技巧性較強、難度較大,自己很難解決,而又不超出所學內容的例題,例如中等難度的競賽試題。這樣可以豐富知識,拓寬思路,這對提高綜合運用知識的能力很有幫助。學好數學,看例題是很重要的一個環節,切不可忽視。

  第三點,多做練習。

  要想學好數學,必須多做練習,但有的同學多做練習能學好,有的同學做了很多練習仍舊學不好,究其因,是“多做練習”是否得法的問題,我們所說的“多做練習”,不是搞“題海戰術”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結論是否還可以加強、推廣,等等,還要真正

  掌握方法,切實做到以下三點,才能使“多做練習”真正發揮它的作用。

  1、必須熟悉各種基本題型并掌握其解法。

  課本上的每一道練習題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習題,也有許多基本題型,其運用方法較多,針對性也強,應該能夠迅速做出。

  許多綜合題只是若干個基本題的有機結合,基本題掌握了,不愁解不了它們。

  2、在解題過程中有意識地注重題目所體現的出的思維方法,以形成正確的思維定勢。

  數學是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的.思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎。

  3、多做綜合題。

  綜合題,由于用到的知識點較多,頗受命題人青睞。

  做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數學水平不斷提高。

  “多做練習”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。

  最后一點,我要說一說如何對待考試的問題。

  學數學并非為了單純的考試,但考試成績基本上還是可以反映出一個人數學水平的高低、數學素質的好壞的,要想在考試中取得好的成績,以下幾個方面的素質是必不可少的。

  首先,功夫用在平時,考前不搞突擊,考試中需要掌握的內容應該在平時就掌握好,考試前一天晚上不搞疲勞戰,一定要休息好,這樣,在考場上才能有充沛的精力,考試時還要放下包袱,驅除壓力,把注意力集中在試卷上,認真分析,嚴密推理。

  其次,應試需要技巧,試卷發下來后,應先大致看一下題量,大概分配一下時間,做題時若一道題用時太多還未找到思路,可暫時放過去,將會做的做完,回頭再仔細考慮,一道題目做完之后不要急于做下一道,要再看一遍,因為這時腦中思路還比較

  清晰,檢查起來比較容易,對于有若干問的解答題,在解答后面的問題時可以利用前面問題的結論,即使前面的問題沒有解答出來,只要說清這個條件的出處(當然是題目要求證明的),也是可以運用的,另外,對于試題必須考慮周全,特別是填空題,有的要注明取值范圍,有的答案不只一個,一定要細心,不要漏掉。最后,考試時要冷靜,有的同學一遇到不會的題目,腦袋立刻熱了起來,結果,心里一著急,自己本來會的也做不出來了,這種心理狀態是考不出好成績的,我們在考試時不妨用一用自我安慰的心理:我不會的題目別人也不會,(俗稱精神勝利法)或許可以使心情平靜,從而發揮出自己的最好水平,當然,安慰歸安慰,對于那些一下子做不出的題目,還是要努力思考,盡量能做出多少就做多。

數學學習方法總結8

  首先,不要忽視課本。把高一高二的所有教學課本找出來,認認真真仔仔細細地把里面的知識點定理公理等等都看一遍,包括書上的證明也不要忽視。不是說看一遍就了事的,而是真正的去理解他。因為在你高一高二所有的月考,期中考,期末考,經歷了這么多題海戰術之后你要做的就是要回歸課本。你會發現有些高考題,他是很巧妙的利用了書上一些簡單的定義進行變換和引申得到的。所以當老師帶著從頭復習的時候,不要排斥,而是要回憶,消化,理解和掌握這些書本上的基礎知識。

  第二,要嘗試著去掌握一些新的定理和法則。在高一高二的時候,老師可能會說這個公式不是大綱要求的,所以不必掌握。這是完全正確的,因為當時所有的知識都是新的.,你在面對過多新知識的時候,很難消化和掌握。但是現在你已經掌握了很多知識的基礎上,在去適當的結合自己的能力去了解一些考綱之外的,就更容易掌握了。比如洛必達法則,高中雖然不講,但是在答大題的時候用起來很方便的一個法則。如果你掌握了,你就會比別人做的更好更快更準確。

  第三,要注意數學思想和方法的總結。比如說畫圖的思想,轉化的思想等等。這個操作起來還是比較容易的。就是在你每次做完題要注意看解析,看他是怎么分析試題的;老師講課的時候是怎么講解和歸類的;甚至可以多問一下身邊的同學是怎么做這道題的,來尋求一題多解,多思路,看有沒有比你的方法更好的方法。良好的方法是成功的一半,掌握了正確的方法不僅省時更省力。

  第四,計算能力的提高。講真,我是沒有這個毛病的。但是我身邊的好多同學有這個問題,就是明明會做的題一定會算錯。小題大題一張卷下來能扣出來10分。嘴上說著是粗心,但我認為不是。我覺得有兩個原因,一個是知識掌握的不牢固,另一個是自身計算能力太差。這兩點都是很致命的。計算能力的提高,會讓正確率上升,會做的題會一次性做對。同時,也會節省出很多時間,去做其他的題。所以從一輪復習開始就要學會提升自己的計算能力,這樣到最后才不會后悔

  【提高學習成績的方法】

  掌握每一個公式定理

  做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經具備了一定的理解力。

  做課后練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。

  進行專題訓練提高數學成績

  1.做高中數學題的時候千萬不能怕難題!有很多人數學分數提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數,看到稍微長一點的復雜一點的敘述,甚至看到21、22就已經開始退卻了。這部分的分數,如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數學這門學科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。

  2.錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。

  3.高中數學試卷怎么做?我的習慣是模擬題做專題練習,即我復習三角函數,我就一天做五套卷子的函數,練選擇題,我就刷選擇題。高考卷子則是完全模擬,而且優先挑自己省的以及和自己省相似的卷子模擬,時間的跨度以三年內的為準,因為我當年是課改的第二年,所以第一年的卷子我做的特別細致。

數學學習方法總結9

  一、明確畢業班數學復習課的意義

  1、促進知識的系統化。復習課應從知識的重點、學習的難點和學生的薄弱環節入手,引導學生把已學知識進行梳理、分類、整合,弄清來龍去脈,從整體上把握知識結構。復習中引導學生自主整理,促進知識系統化,不僅要構建完整的知識網絡,使學生對以前所學知識有新的認識,達到“整體大于部分之和”的目的。同時,要重視在復習整理過程中,培養學生自主整理的意識,發展學生自主學習的功能。

  2、提高綜合應用知識的能力。復習課要設計知識綜合應用練習,促使學生調動各方面的知識與生活經驗來解決問題,從而提高學生綜合應用知識的能力。要特別注意密切聯系學生的交際生活,在解決實際問題的過程中,培養學生靈活運用數學知識的意識和能力。

  3、要體現“不同的人適應不同的教學”的基本理念,使不同的學生得到不同的發展。首先要查缺補漏,使每個學生達到數學課程標準提出的基本要求。從“以學生發展為本”的基本理念出發,教師應鼓勵和引導學生自查、自糾、自補。查和補的內容不僅是知識和技能方面,還應包括數學的思想、方法和自主學習能力等。其次,要根據不同學生之間的差異,組織不同層次的練習,提出不同層次的發展要求,使不同層次的學生得到不同的發展。

  二、貼近實際、專題復習、各個擊破、典型反饋和個別反饋相結合

  針對學生容易發生普遍性錯誤和個別性錯誤的知識點,我采取典型反饋和個別反饋相結合,加強針對性訓練,專題復習,各個擊破。

  1、重視班級學生的“分層導學”,發展共性,培養個性,激勵學生相互檢查,相互出試卷檢測,并共同提高。在分層導學中,確立優先主要目標:審題萬無一失,解題靈活運用;中等生主要目標:細心檢查,努力提高;對于學生有困難的學生主要目標;基礎扎實主,確實知識底線。要求把學生的各種反饋信息分層,并即時歸納整理,確立復習思路,確立復習重點,加強針對性。既重視學生的共同缺陷,又重視個體差異。

  2、對學生進行專題復習訓練,融合知識的復習于技能訓練中,強化學生的內功,向練習要質量。在練習時,從專題知識出發進行定向訓練,精講精練,加強典型訓練,及時反饋,正確引導學生形成良好的知識系統。教師必須將學生的復習定位在高角度上,精心選編針對性強的練習,讓所有學生的均有收益。

  3、注重學生自我評價的反饋,調動學生的復習積極性,提高每節復習課的效果。在這一階段的復習中要靈活選擇時機進行專題測試,在專題測試試卷評析的基礎上,要求學生對本張試卷所反映的情況進行一次書面自我評估。在查漏補缺之后,綜合各單元所反映的情況,進行綜合性試卷反饋,即有的放矢地進行針對性補缺,發現問題,定向突破。訓練中必須要做到定時定量,迫求速度和效果的統一。鼓勵學生爭取記錄好人手一冊“總復習錯題集”,靈活運用錯題集,經常翻閱分析,力爭錯誤不再重犯。集中補“缺陷”,真正提高復習效率。

  三、分類整理,梳理、強化復習的`系統性

  小學數學中的概念大約有500個,復習時,要引導學生對這些概述進行回顧梳理、分類整理、整體、把握。同時把相關的概念聯系溝通,使分散的“零件”組裝成“機器”。小學數學中的概念,可以歸納為以下八個部分:(1)數的概念(整數、小數、分數、百分數);(2)四則計算概念,包括四則計算的意義、計算法、運算定律;(3)幾何知識,包括圖形名稱、性質、特征和分類,有關圖形的周長、面積、表面積、體積、容積等概念和公式,還包括量計算單位;(4)數的整除概念,包括整除、除盡、約數、倍數、質數、合數、公倍數、公約數、互質數等;(5)比和比例的概念,包括比、比例尺、正比例、反比例、比值、最簡比等和相關的名詞術語;(6)式的概念,包括等式、不等式、方程、方程的解、解方程等。(7)統計和概率。(8)數學廣角。除此之外,有些名詞術語也是十分重要的數學概念,如增加、減少、擴大、縮小、平均等。對于一些關系密切的、容易混淆的概念則可通過列表的形式進行總結,以便學生系統掌握。

  四、控制優化練習測試

  復習階段必要的練習檢測也是十分必要的,但是練習檢測的次數要嚴格控制,“泛而濫”的檢測既起不到位應的效果。檢測要有目的性,通過檢測要能發現些存在的問題,但更多的是通過檢測樹立起學生復習好數學的自信心,激起復習興趣,不能把檢測作為懲罰學生的依據,否則學生心理就會變異,會“談檢色變”,起不到檢測應有的效果。那么如何進行科學、有效的檢測?筆者認為:(1)復習階段的檢測一段2周一次,檢測的內容當然要緊扣這兩周復習的內容,凸現基礎性,適當滲透綜合題,不能隨意拔高要求,不出偏題和怪題,要讓學生通過檢測,看到自己的復習成果,建立自信,以飽滿的姿態投入后續的復習中;(2)檢測以后教師要及時進行講評,對普遍存在的問題,采取有效措施及時補救,對取得進步的學生,要大張旗鼓的給予表揚,對一時不慎落后的學生,要耐心地幫助查找原因,保護其自尊;(3)練習檢測的成績不宜在班級分布,更不要排名次,如果學生一時沒發揮好,最好能給他一次補考的機會,時時處處營造一種寬松、和諧的檢測氛圍,有利于形成安全、健康、向上的考試心理,使每個學生在“大考”時更能發揮出自己應有的水平。

數學學習方法總結10

  《初一代數》(上冊)的數學內容從整體上看主要是解決從算術進展到代數這個重要的基本課題。我們認為主要體現在以下兩個方面。一方面是“數集的擴充”,即引進負數,把原有的算術數集合擴充到有理數集合;另一方面是解代數方程的原理和方法,即從用字母表示數,到用“列方程”取代“列算式”解應用問題。

  數集的每一次擴充都是解決實際問題和解決數學自身矛盾的需要。有理數概念的建立,有理數性質的介紹,有理數運算法則的規定,這一切都為同學們進一步學習代數做了必要的準備。同學們在學習有理數一章時,希望大家要有意識地培養自己邏輯推理能力,使自己會觀察、比較、分析、綜合、抽象和概括,會用歸納和類比的方法進行推理。另外要特別重視提高運算能力,有過硬的運算基本功。

  為此,不僅能根據法則、運算規律、公式等正確地進行運算,而且理解運算的算理,能夠根據題目條件,使運算“合理、簡捷、準確”。為了解決用算術方法解應用題的局限性,人們想出用字母表示未知數,把問題中的相等關系平鋪直敘地用代數方程式表達出來。由于表示未知數的字母也是數,因此,它們也可以按照數的運算的通性、通法進行運算,從而求得未知數所應有的值。同學們要充分注意這一“歷史性”的突破。為此,不僅要熟練掌握含數字的算術的變形和計算,更要切實掌握好含字母的代數式(目前主要是整式)的變形和計算,解方程的基本方法和步驟,這一切都是為列方程解應用題而展開的。通過列方程解應用題的學習,體會如何把實際問題抽象成數學問題,用方程思想處理數學問題,形成用數學的意識,培養我們自己分析問題和解決問題的能力。要不斷培養學習數學的興趣和求知欲望

  有許多同學在小學都曾有過這樣的感受,每當你認識了一個數學規律,解決了一個較難的.應用問題,成功的喜悅是無法用別的東西來替代的,它激勵你的學習熱情和好奇心,越學越愛學。學習的興趣和求知欲是要不斷地培養的,況且同學們剛剛邁進“數學王國”的大花園里,許多奧妙無窮的數學問題還等著你們去學習、觀賞、研究。:傻做題不如巧做

  一、制定切實可行的計劃,家長與孩子一起討論,合理的羅列出完成某些要事的時間段及要達到的目標。

  二、數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為基本問題;要反思錯誤,找出產生錯誤的原因,訂出改正的措施。

  三、數學不等于做題,千萬不要忽視最基本的概念、公理、定理和公式,寒假里要把已經學過的教科書中的概念整理出來,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。

  其次,數學需要實踐,需要大量做題,但要“埋下頭去做題,抬起頭來想題”,在做題中關注思路、方法、技巧,注重發現題與題之間的內在聯系,要“苦做”更要“巧做”,絕不能“傻做”。在做一道與以前相似的題目時,要會通過比較,發現規律,穿透實質,以達到“觸類旁通”的境界。此外,大家在平時做題中就要及時記錄錯題,還要想一想為什么會錯、以後要特別注意哪些地方,這樣就能避免不必要的失分。如果試題中涉及到你的薄弱環節,一定要通過短時間的專題學習,集中優勢兵力,攻克難關,別留下陷阱。:學好數學的幾點注意事項

  1、課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題。預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15—20分鐘。在時間允許的情況下,還可以將練習冊做完。

  2、讓數學課學與練結合。在數學課上,光聽是沒用的當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節問題,否則“千里之堤,毀于蟻穴”。

  3、課后及時復習。寫完作業后對當天老師講的內容進行梳理,可以適當地做25分鐘左右的課外題。可以根據自己的需要選擇適合自己的課外書。其課外題內容大概就是今天上的課。

  4、單元測驗是為了檢測近期的學習情況。其實分數代表的是你的過去,關鍵的是對于每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好。老師經常會在沒通知的情況下進行考試,所以要及時做到“課后復習”。

數學學習方法總結11

  1、掌握基礎知識和基本技能:初中數學的學習需要掌握一定的基礎知識,如算術、代數、幾何、概率與統計等方面的知識。同時,也需要掌握基本技能,如計算、推理、畫圖、實驗等能力。

  2、建立良好的`學習習慣:初中數學的學習需要養成良好的學習習慣,如認真聽講、獨立思考、勤奮學習、按時完成作業、積極參與課堂討論等。

  3、多做練習題:數學是一門需要大量練習的學科,通過多做練習題,可以加深對基礎知識的理解和掌握,提高解題能力。

  4、學習方法多樣化:在學習數學時,可以采用多種方法,如看教科書、看視頻、聽講座、做練習、參加數學俱樂部等。

  5、培養興趣:興趣是最好的老師,在學習數學時,可以多了解一些數學的應用,如數學在金融、科學、工程等領域的應用,從而激發學習的興趣和動力。

  6、注重思維訓練:數學不僅僅是計算和解題,更重要的是培養思維能力,如邏輯思維、空間想象能力、創新能力等。因此,在學習數學時,需要注重思維訓練,多思考問題的本質和解決方法。

  7、及時請教:在學習數學時,遇到問題需要及時請教老師或同學,尋求幫助和解答。

數學學習方法總結12


  數學是高考科目之一,故從初一開始就要認真地學習數學。進入高中以后,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由于同學們不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點和高中教學經驗,談一談高中數學學習方法,供同學參考。

  一:先注意以下三點。

  一)、課內重視聽講,課后及時復習。

  新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

  二)、適當多做題,養成良好的解題習慣。

  要想學好數學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

  三)、調整心態,正確對待考試。

  首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

  在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

  由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

  二:初中數學與高中數學的比較。

  一)、初中數學與高中數學的差異。

  1、知識差異。

  初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“00—1800”范圍內的,但實際當中也有7200和“--3000”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2= -1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。

  2、學習方法的差異。

  (1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(如:高一有八門課同時學習),每天至少上八節課,自習時間四節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,高中數學教師將不能向初中那樣監督每個學生的作業和課外練習,就不能向初中那樣把知識讓每個學生掌握后再進行新課。

  (2)模仿與創新的區別。

  初中學生模仿做題,他們模仿老師思維推理較多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即使就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。

  3、學生自學能力的差異

  初中學生自學能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的'發展。

  其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。

  4、思維習慣上的差異

  初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。

  5、定量與變量的差異

  初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。

  二)高中數學與初中數學特點的變化。

  1、數學語言在抽象程度上突變

  初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。

  2、思維方法向理性層次躍遷

  高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

  3、知識內容的整體數量劇增

  高中數學與初中數學又一個明顯的不同是知識內容的“量”上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。

  4、知識的獨立性大

  初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便于記憶,又適合于知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。

  三、如何學好高中數學。

  一)、培養良好的學習興趣。

  兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?

  1、課前預習,對所學知識產生疑問,產生好奇心。

  2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。

  3、思考問題注意歸納,挖掘你學習的潛力。

  4、聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?

  5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。

  二)、建立良好的學習數學習慣。

  習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

  三)、有意識培養自己的各方面能力。

  數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

  四)、及時了解、掌握常用的數學思想和方法。

  學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

  解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

  五)、逐步形成 “以我為主”的學習模式。

  數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足于現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

  六)、針對自己的學習情況,采取一些具體的措施。

  記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中擴展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。

  經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納于同一知識方法。

  閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。

  及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學后忘。學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網絡化。

  經常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

  無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。

  七)、認真聽好每一節棵。

  在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。

  概念課

  要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。

  習題課

  要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進”,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然后再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。

  復習課

  在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家準備一本數學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到高考時你的數學就沒有什么“病例”了。并且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以“練”代“復”的題海戰術。

  四、其它注意事項

  1.注意化歸轉化思想學習。

  人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。

  2.學會數學教材的數學思想方法。

  數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。

  課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是_____(符號相反的數)。.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的(相等)。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。

  五、學好數學的幾個建議。

  1.記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。如:我在講課時的注解。

  2.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  3.記憶數學規律和數學小結論。

  4.與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。

  5.爭做數學課外題,加大自學力度。

  6.反復鞏固,消滅前學后忘。

  7.學會總結歸類。①從數學思想分類②從解題方法歸類③從知識應用上分類。

  總之,對高一新生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。

  其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。

  最后,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恒心,更要有一顆平常心。

數學學習方法總結13

  作為教育工作者,對待學生學習上的問題,處理問題的心態與家長有所不同,家長由于親情關系,容易急燥,然而對待學習和成長方面的問題,急燥是不解決問題的,必須要有科學的方式、方法和教育手段,引導學生解決這些學習中的問題。

  數學有一個特點是重要、枯燥。重要是顯而易見的,數學作為基礎學科,高考、中考都考數學;同時它又是枯燥乏味的,這似乎是一對矛盾,要處理這對矛盾,就要解決一個數學學習當中的技巧性問題和心理問題。當然不可能人人都能把數學學好,由于各人的性向不同,有的人傾向于人文學科,有的人傾向于邏輯思維,有的人傾向于空間思維,有的人則傾向于動手能力…..各人的傾向性不一樣,擅長的方面也各不相同,對數學能達到的層次也會參差不齊,但有一點,數學的一些基本要求一定要掌握,例如數學中的一些基本原理、數學方法不能有半點馬虎。因為無論將來我們從事什么行業,數學作為一種基本的處理事物的方法都非常重要。一般的孩子只要通過正確的方法,正確的引導都能夠達到。

  一、數學中關于概念的問題

  概念的形成需要一個過程。與人生哲理等概念不同,數學概念具有疊加性,也就是說新概念是在舊概念疊加的基礎上來認識的。概念是數學中的'一個根本問題,不是靠背,而是在不斷地運用中逐漸形成的,須經過比較、實踐、摸索、總結、歸納等過程,最后建立一個完整的概念。這個過程甚至可以說是痛苦的,漫長的一個階段。

  概念具有長期性。每個概念都有一個失敗—再失敗的過程,伴隨著你對這個概念的錯誤理解,在挫折中不斷加深的。

  概念是隨著一個人知識的增加而不斷深入的。學數學對一個人建立完整的思維方式很重要,隨著對不同數學概念的深入理解,人們處理問題的方式可以越來越趨于嚴謹。

  要建立一個數學的概念網。數學是一個個概念的點陣,所有的相關的、從屬的概念要在頭腦中形成一個網絡。學概念要把不能納入其中的或相關概念認識清楚。總概念中各相關概念是怎樣發展的要有一個清析的脈絡。

  從不同的層面上來理解一個數學概念。有比較才有認識,對于一個數學概念要擅于從正面、側面、上面、下面等各個層面上來認識它。對于相似的、類似的概念或概念的內部關系認識不清,不利于理解概念,這說明數學末學深入。

  二、運算能力:

  符號化、模式化是數學的一大特點,對這點我們應該有深刻的認識。

  1、模式化。數學的一些定理、原理、公理都有一定的模式,“因為即最簡單的一種模式,對各種數學模式的理解認識也是對人的邏輯思維能力的訓練。

  2、符號化。數學的符號與表達性符號不同,文學藝術中的表達性符號是需要我們仔細體會其中的含義的;而數學中的符號是一種替代性符號,它無需我們想其含義,作用就在于推導,它只是一個替身,幫助我們進行數學思維,所以我們不可以在它的含義上耗費太多的精力。數學就是符號游戲,我們對符號必須精通,才能進行迅速變形。

  中學階段有幾個重要的定理:三垂線定理、正余弦定理、根與系數的關系、二次三項式定理。對這幾個定理的運用必須熟練掌握。

  三、做題技巧:

  從做題方式來分,平時作業可分為硬作業和軟作業兩種:硬作業是指每天需要認認真真做的作業,這類作業要按正規的步驟一絲不茍地做,旨在訓練自己的筆頭功夫和書寫能力;軟作業是指每日需抽出一定的時間來瀏覽若干習題,這類題主要是用來鍛煉自己的思維能力的,具體做法是無需動筆,眼睛看著習題,大腦中迅速掠過這道題的思路、做法,整個過程有點類似空對空。所以在平日做題中兩種方式要搭配使用,認真做的題和瀏覽的題要相濟并用。

  做題要有節奏,難易結合。做題要講質量,不能把精力都放在做偏、難、怪的題型上,因為高考中有難題,平時將重心放在難題上,基礎知識難免會偏失,所以平時適度地做一些中等難度的題即可,關鍵是要學好基礎知識,循序漸進。

  做題要留體會,留下痕跡,學習分為三個過程:模仿、品味、遷移。模仿是初始階段經常作用的一種方式,以老師或教科書為參照,按部就班地做。經過一次次地模仿,我們自己對這些記憶中的題型在大腦中進一步地加工、體會,形成自己對這類題的成型的理解。經過前兩個階段的積累,最后達到將原知識體系與現有知識的相互融合,就實現了對新、舊知識的最新體會。

數學學習方法總結14

  陸金中表示,以前學過的知識要全面掌握和理解,在心中建立知識網絡。打好基礎,首先須重視數學基本概念、基本定理(公式、法則)的復習,在理解上下功夫,整體把握數學知識。這部分內容的復習要做到不打開課本,能選擇適當途徑將它們回憶出,它們之間的脈絡框圖,能在自己大腦中勾畫出來。如函數可以利用框圖的形式由粗到細進行回憶。

  概念要抓住關鍵及注意點,公式及法則要理解它們的來源,要理解公式法則中每一個字母的含義,即它們分別表示什么,這樣才能正確使用公式。在平時學習時,不要滿足于得到答案就行了,而其他的方法卻不去研究,尤其課堂上,老師通過一個典型的例題介紹處理這種問題有哪些方法,可以從哪些不同的角度來思考問題。方法沒有好壞之分,只是在解決具體的問題時才有優劣之分,更重要的是要關注通性、通法的掌握,而不是僅關注此問題特殊的'、簡單的方法。

  高考數學復習七大知識點:

  第一,函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。

  第二,平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

  第三,數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

  第五,概率和統計。這部分和我們的生活聯系比較大,屬應用題。

  第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點,運算量大,一般含參數。

  高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。針對數學高考強調對基礎知識與基本技能的考查我們一定要全面、系統地復習高中數學的基礎知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應萬變。

  對數學思想和方法的考查是對數學知識在更高層次上的抽象和概括的考查,考查時與數學知識相結合。

  對數學能力的考查,強調“以能力立意”,就是以數學知識為載體,從問題入手,把握學科的整體意義,用統一的數學觀點組織材料,側重體現對知識的理解和應用,尤其是綜合和靈活的應用,所有數學考試最終落在解題上。考綱對數學思維能力、運算能力、空間想象能力以及實踐能力和創新意識都提出了十分明確的考查要求,而解題訓練是提高能力的必要途徑,所以高考復習必須把解題訓練落到實處。

數學學習方法總結15

  教學方法的效果取決于學習方式和教學方式的協調一致。在國際教育改革和發展趨勢中,培養學生學習能力和主動發展的愿望已成為各國共同追求的目標。進入信息時代的新世紀,知識更新速度加快,學習變成了貫穿一生的過程。因此,我們不僅要關注學生綜合素質和個性的健康發展,還要注重他們的學習和發展,更重要的是讓學生愿意學習、學會學習,并掌握學習的方法和技能,能夠積極主動地進行學習。

  一、檢查基本概念

  基本概念、法則、公式是同學們檢查時最容易忽視的,因此在解題時極易發生小錯誤,而自己卻檢查數次也發現不了,所以,做完試卷第一步,在檢查基本題時,我們要仔細讀題,回到概念的定義中去,對癥下藥。

  比如中考題選擇題,題目問“8的平方根是多少”,如果學生選擇了2√2,檢查時很容易會再算一次(2√2)^2=8,就想當然的以為答案是對的了。此時,我們就應該從概念入手,想想什么是“平方根”,那就會回憶起這樣一個等式x^2=8,看到這個方程,就會想到應該有正負兩個解。

  二、對稱檢驗

  對稱的條件勢必導致結論的對稱,利用這種對稱原理可以對答案進行快速檢驗。

  比如:因式分解,(xy+1)(x+1)(y+1)+xy=(xy-y+1)(xy+x+1)結論顯然錯誤。

  左端關于x、y對稱,所以右端也應關于x、y對稱,正確答案應為:(xy+1)(x+1)(y+1)+xy=(xy+y+1)(xy+x+1)。

  三、不變量檢驗

  某些數學問題在變化、變形過程中,其中有的量保持不變,如圖形在平移、旋轉、翻折時,圖形的形狀、大小不變,基本量也不變。利用這種變化過程中的不變量,可以直接驗證某些答案的正確性。

  四、特殊情形檢驗

  問題的特殊情況往往比一般情況更易解決,因此通過特殊值、特例來檢驗答案是非常快捷的方法。

  比如中考經常考的冪的運算,比如(-a^2)^3,就可以取a=2,先計算-a^2=-4,再計算(-4)^3,就很容易檢驗出原答案的正確與否。

  五、答案逆推法

  很多學生在解題后會采用一種常見的方法,即將答案代入題目中驗證條件是否成立。然而,使用這種方法時需要謹慎,必須考慮是否存在多個解的情況。我覺得很多學生都會想到這樣的方法,在求得答案之后,可以將答案重新代入題目中,以驗證題目的條件是否滿足。但是要注意,使用這種方法時必須思考是否可能存在多個解的情況。

  總而言之,要想提高檢查的次數與效率,又想避免枯燥的'重復,就需要一題多解去檢驗。

  人們普遍存在慣性思維,即在解決問題時傾向使用相同的方法,這很容易導致忽視一些細微的錯誤。在檢查答案時,我們應該嘗試采用一些新的方法。這樣做有幾個好處:首先,能夠驗證答案的正確性;其次,可以減少機械性重復產生的枯燥感;第三,思考新的解法也是鍛煉思維的有效方式;第四,能夠充分發揮試卷中題目的作用,實現多方面收益。以上措施可謂一舉多得。

  此外,直接檢查法是一種重要的解題方法,需要注重技巧。它通過核對、校對和驗算求解過程及相關結論來進行檢查。為了方便檢查,建議使用草稿紙,并按順序演算并標上題號,以便進行對照。同時,要非常細心,每個細節都需要仔細推敲,不能憑空假設。記住,“最安全的地方有時候也是最危險的地方”。

【數學學習方法總結】相關文章:

數學學習方法總結07-15

總結數學學習方法05-17

小學數學學習方法的總結11-10

小學數學學習方法總結11-10

初中數學學習方法總結12-02

初中數學學習方法總結01-11

初三數學學習方法總結07-01

【精選】數學學習方法總結15篇07-16

高中數學學習方法總結07-13

初三數學學習方法總結范文07-01

久久一级2021视频,久久人成免费视频,欧美国产亚洲卡通综合,久久综合亚洲一区二区三区色
日本国产网曝视频在线观看 | 色婷婷综合缴情综图 | 亚洲AV日韩AV欧v在线天堂 | 亚洲中文字无幕码中文字 | 亚洲欧美中文日韩v日本 | 偷拍精品视频一区二区三区 |